版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、北師大版高中數(shù)學(xué)選修2-1第一章常用邏輯用語全部教案1.1命題及其關(guān)系第一課時(shí)1.1.1命題一、教學(xué)目標(biāo):、知識(shí)與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;、過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;、情感、態(tài)度與價(jià)值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。 二、教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):命題的概念、命題的構(gòu)成;難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假。三、教學(xué)方法:探析歸納,講練結(jié)合三、教學(xué)過程(一)、復(fù)習(xí)回顧:初中已學(xué)過命題的知識(shí),請(qǐng)同學(xué)們回顧:什么叫做命題?(二
2、)、探析新課1、思考、分析:下列語句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?(1)若直線ab,則直線a與直線b沒有公共點(diǎn)(2)2+4=7(3)垂直于同一條直線的兩個(gè)平面平行()若x2=1,則x=1()兩個(gè)全等三角形的面積相等()能被整除2、討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。教師的引導(dǎo)分析:所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清。3、抽象、歸納:定義:一般地,我們把用語言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句叫做命題 命題的定義的要點(diǎn):能判斷真假的陳述句在數(shù)
3、學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子 教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對(duì)命題這一概念的理解4、練習(xí)、深化:判斷下列語句是否為命題? ()空集是任何集合的子集()若整數(shù)a是素?cái)?shù),則是a奇數(shù)()指數(shù)函數(shù)是增函數(shù)嗎?()若平面上兩條直線不相交,則這兩條直線平行()()x讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個(gè)語句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個(gè)條件缺一不可疑問句、祈使句、感嘆句均不是命題解略。引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定
4、理、推論的例子來看看?通過對(duì)此問的思考,學(xué)生將清晰地認(rèn)識(shí)到定理、推論都是命題過渡:同學(xué)們都知道,一個(gè)定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?5、命題的構(gòu)成條件和結(jié)論:定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成在數(shù)學(xué)中,命題常寫成“若p,則q”或者 “如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論6、練習(xí)、深化:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假()若整數(shù)a能被整除
5、,則a是偶數(shù)()若四邊行是菱形,則它的對(duì)角線互相垂直平分()若a0,b0,則a+b0()若a0,b0,則a+b0()垂直于同一條直線的兩個(gè)平面平行此題中的()()()(),較容易,估計(jì)學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題()與()的目的在于:通過這兩個(gè)例子的比較,學(xué)更深刻地理解命題的定義能判斷真假的陳述句,不管判斷的結(jié)果是對(duì)的還是錯(cuò)的。 此例中的命題(),不是“若P,則q”的形式,估計(jì)學(xué)生會(huì)有困難,此時(shí),教師引導(dǎo)學(xué)生一起分析:已知的事項(xiàng)為“條件”,由已知推出的事項(xiàng)為“結(jié)論”解略。過渡:從例中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)
6、論是錯(cuò)誤的,那么我們就有了對(duì)命題的一種分類:真命題和假命題7、命題的分類真命題、假命題的定義真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的命題叫做真命題假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題強(qiáng)調(diào):()注意命題與假命題的區(qū)別如:“作直線AB”這本身不是命題也更不是假命題()命題是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。8、怎樣判斷一個(gè)數(shù)學(xué)命題的真假?()數(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過證明()要判斷一個(gè)命題是假命題,只需舉一個(gè)反例即可9、練習(xí)、深化:例:把下列命
7、題寫成“若P,則q”的形式,并判斷是真命題還是假命題:() 面積相等的兩個(gè)三角形全等。() 負(fù)數(shù)的立方是負(fù)數(shù)。() 對(duì)頂角相等。分析:要把一個(gè)命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式解略。(三)、課堂練習(xí):、(四)、課堂總結(jié)師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容1什么叫命題?真命題?假命題? 2命題是由哪兩部分構(gòu)成的?3怎樣將命題寫成“若P,則q”的形式4如何判斷真假命題教師提示應(yīng)注意的問題:1命題與真、假命題的關(guān)系2抓住命題的兩個(gè)構(gòu)成部分,判斷一些語句是否為命題判斷假命題,只需舉一個(gè)反例,而判斷真命題,要經(jīng)過證明(五)、作業(yè):P9:習(xí)題
8、1組第1題五、教后反思:第二課時(shí) 1.1.2四種命題1.1.3四種命題的相互關(guān)系一、教學(xué)目標(biāo):1、知識(shí)與技能:了解原命題、逆命題、否命題、逆否命題這四種命題的概念,掌握四種命題的形式和四種命題間的相互關(guān)系,會(huì)用等價(jià)命題判斷四種命題的真假 2、過程與方法:多讓學(xué)生舉命題的例子,并寫出四種命題,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題、有創(chuàng)造性地解決問題的能力;培養(yǎng)學(xué)生抽象概括能力和思維能力3、情感、態(tài)度與價(jià)值觀:通過學(xué)生的舉例,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的分析問題和解決問題的能力二、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):(1)會(huì)寫四種命題并會(huì)判斷命題的真假;(2)四種命題之間的相互
9、關(guān)系難點(diǎn):(1)命題的否定與否命題的區(qū)別;(2)寫出原命題的逆命題、否命題和逆否命題;(3)分析四種命題之間相互的關(guān)系并判斷命題的真假三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程(一)、復(fù)習(xí)引入:初中已學(xué)過命題與逆命題的知識(shí),請(qǐng)同學(xué)回顧:什么叫做命題的逆命題?(二)、探析新課1、思考、分析:?jiǎn)栴}1:下列四個(gè)命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù)(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù)(3)若f(x)不是正弦函數(shù),則f(x)不是周期函數(shù)(4)若f(x)不是周期函數(shù),則f(x)不是正弦函數(shù)2、歸納總結(jié):
10、問題一通過學(xué)生分析、討論可以得到正確結(jié)論緊接結(jié)合此例給出四個(gè)命題的概念,()和()這樣的兩個(gè)命題叫做互逆命題,()和()這樣的兩個(gè)命題叫做互否命題,()和()這樣的兩個(gè)命題叫做互為逆否命題。3、抽象概括:定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,那么我們把這樣的兩個(gè)命題叫做互逆命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的逆命題讓學(xué)生舉一些互逆命題的例子。定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,那么我們把這樣的兩個(gè)命題叫做互否命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的否命題讓學(xué)生舉一些互否
11、命題的例子。定義:一般地,對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,那么我們把這樣的兩個(gè)命題叫做互為逆否命題其中一個(gè)命題叫做原命題,另一個(gè)命題叫做原命題的逆否命題讓學(xué)生舉一些互為逆否命題的例子。小結(jié):(1)交換原命題的條件和結(jié)論,所得的命題就是它的逆命題;(2)同時(shí)否定原命題的條件和結(jié)論,所得的命題就是它的否命題;(3)交換原命題的條件和結(jié)論,并且同時(shí)否定,所得的命題就是它的逆否命題強(qiáng)調(diào):原命題與逆命題、原命題與否命題、原命題與逆否命題是相對(duì)的。4、四種命題的形式:讓學(xué)生結(jié)合所舉例子,思考:若原命題為“若P,則q”的形式,則它的逆命題、否命題、逆否命題應(yīng)分
12、別寫成什么形式?學(xué)生通過思考、分析、比較,總結(jié)如下:原命題:若P,則q則:逆命題:若q,則P否命題:若P,則q(說明符號(hào)“”的含義:符號(hào)“”叫做否定符號(hào)“p”表示p的否定;即不是p;非p)逆否命題:若q,則P5、練習(xí)鞏固:寫出下列命題的逆命題、否命題、逆否命題并判斷它們的真假:() 若一個(gè)三角形的兩條邊相等,則這個(gè)三角形的兩個(gè)角相等;() 若一個(gè)整數(shù)的末位數(shù)字是,則這個(gè)整數(shù)能被整除;() 若x2=1,則x=1;() 若整數(shù)a是素?cái)?shù),則是a奇數(shù)。6、思考、分析:結(jié)合以上練習(xí)思考:原命題的真假與其它三種命題的真假有什么關(guān)系?通過此問,學(xué)生將發(fā)現(xiàn):原命題為真,它的逆命題不一定為真。原命題為真,它的否
13、命題不一定為真。原命題為真,它的逆否命題一定為真。原命題為假時(shí)類似。結(jié)合以上練習(xí)完成下列表格:原 命 題逆 命 題否 命 題逆 否 命 題真真假真假真假假由表格學(xué)生可以發(fā)現(xiàn):原命題與逆否命題總是具有相同的真假性,逆命題與否命題也總是具有相同的真假性由此會(huì)引起我們的思考:一個(gè)命題的逆命題、否命題與逆否命題之間是否還存在著一定的關(guān)系呢?讓學(xué)生結(jié)合所做練習(xí)分析原命題與它的逆命題、否命題與逆否命題四種命題間的關(guān)系學(xué)生通過分析,將發(fā)現(xiàn)四種命題間的關(guān)系如下圖所示:7、總結(jié)歸納若P,則q若q,則P原命題互 逆逆命題互否互 為 否逆互否 為 互逆 否否命題逆否命題互 逆若P,則q若q,則P由于逆命題和否命題也
14、是互為逆否命題,因此四種命題的真假性之間的關(guān)系如下:(1)兩個(gè)命題互為逆否命題,它們有相同的真假性;(2)兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系由于原命題和它的逆否命題有相同的真假性,所以在直接證明某一個(gè)命題為真命題有困難時(shí),可以通過證明它的逆否命題為真命題,來間接地證明原命題為真命題(三)、例題分析:例4: 證明:若p2 q2 2,則p q 2 分析:如果直接證明這個(gè)命題比較困難,可考慮轉(zhuǎn)化為對(duì)它的逆否命題的證明。將“若p2 q2 2,則p q 2”視為原命題,要證明原命題為真命題,可以考慮證明它的逆否命題“若p + q 2,則p2 + q2 2”為真命題,從而達(dá)到證明原命題為真
15、命題的目的證明:若p q 2,則p2 q2(p q)2(p q)2(p q)2所以p2 q22這表明,原命題的逆否命題為真命題,從而原命題為真命題。練習(xí)鞏固:證明:若a2b2ab,則ab(四)、課堂總結(jié):()逆命題、否命題與逆否命題的概念;()兩個(gè)命題互為逆否命題,他們有相同的真假性;()兩個(gè)命題為互逆命題或互否命題,他們的真假性沒有關(guān)系;()原命題與它的逆否命題等價(jià);否命題與逆命題等價(jià)(五)、作業(yè)P9:習(xí)題1組第、題五、教后反思:第三課時(shí) 12.1充分條件與必要條件一、教學(xué)目標(biāo):1.知識(shí)與技能:正確理解充分不必要條件、必要不充分條件的概念;會(huì)判斷命題的充分條件、必要條件2.過程與方法:通過對(duì)
16、充分條件、必要條件的概念的理解和運(yùn)用,培養(yǎng)學(xué)生分析、判斷和歸納的邏輯思維能力 情感、態(tài)度與價(jià)值觀:通過學(xué)生的舉例,培養(yǎng)他們的辨析能力以及培養(yǎng)他們的良好的思維品質(zhì),在練習(xí)過程中進(jìn)行辯證唯物主義思想教育二、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):充分條件、必要條件的概念(解決辦法:對(duì)這三個(gè)概念分別先從實(shí)際問題引起概念,再詳細(xì)講述概念,最后再應(yīng)用概念進(jìn)行論證)難點(diǎn):判斷命題的充分條件、必要條件關(guān)鍵:分清命題的條件和結(jié)論,看是條件能推出結(jié)論還是結(jié)論能推出條件三、教學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程(一)、創(chuàng)設(shè)情境當(dāng)某一天你和你的媽媽在街上遇到老師的時(shí)候,你向老師介紹你的媽媽說:“這是我的媽媽”.那么,大家想一想這個(gè)時(shí)
17、候你的媽媽還會(huì)不會(huì)補(bǔ)充說:“你是她的孩子”呢?不會(huì)了!為什么呢?因?yàn)榍懊婺闼榻B的她是你的媽媽就足于保證你是她的孩子.那么,這在數(shù)學(xué)中是一層什么樣的關(guān)系呢?今天我們就來學(xué)習(xí)這個(gè)有意義的課題充分條件與必要條件.(二)、活動(dòng)嘗試問題1:前面討論了“若p則q”形式的命題的真假判斷,請(qǐng)同學(xué)們判斷下列命題的真假,并說明條件和結(jié)論有什么關(guān)系?(1)若xy,則x2y2(2)若ab = 0,則a = 0(3)若x21,則x1(4)若x1或x2,則x23x20推斷符號(hào)“”的含義: “若p則q”為真,是指由p經(jīng)過推理可以得出q,也就是說,如果p成立,那么q一定成立,記作pq,或者qp;如果由p推不出q,命題為假,
18、記作pq. 簡(jiǎn)單地說,“若p則q”為真,記作pq(或qp);“若p則q”為假,記作pq(或qp). (三)、師生探究命題(1)、 (4)為真,是由p經(jīng)過推理可以得出q,即如果p成立,那么q一定成立,此時(shí)可記作“pq”,命題(2)、(3)為假,是由p經(jīng)過推理得不出q,即如果p成立,推不出q成立,此時(shí)可記作“pq.”說明: “pq”表示“若p則q”為真,可以解釋為:如果具備了條件p,就是以保證q成立,即表示“p蘊(yùn)含q”。(四)、歸納概括1.什么是充分條件?什么是必要條件?一般地,如果已知pq,那么就說:p是q的充分條件;q是p的必要條件;如果已知pq,且qp,那么就說:p是q的充分且必要條件,簡(jiǎn)記
19、充要條件;如果已知pq,那么就說:p不是q的充分條件;q不是p的必要條件;回答上述命題(1)(2)(3)(4)中的條件關(guān)系.命題(1)中因xy x2y2,所以“xy”是“x2y2”的充分條件,“x2y2”是“xy”的必要條件;x2y2xy,所以“x2y2”不是“xy”的充分條件,“xy”不是“x2y2”的必要條件;命題(2)中因a = 0 ab = 0,所以“a = 0”是“ab = 0”的充分條件.“ab = 0”是“a = 0”的必要條件. ab = 0 a = 0,所以“ab = 0”不是“a = 0”的充分條件,“a = 0”不是“ab = 02”的必要條件;命題(3)中,因“x1x2
20、1”,所以“x1”是x21的充分條件,“x21”是“x1”的必要條件. x21 x1,所以“x21”不是“x1”的充分條件,“x1”不是“x21”的必要條件.命題4)中,因x1或x2 x23x20,所以“x1或x2”是“x23x20”的充要分條件.由上述命題的充分條件、必要條件的判斷過程,可確定命題按條件和結(jié)論的充分性、必要性可分為四類:(1)充分不必要條件,即pq,而q p.(2)必要不充分條件,即:p q,而qp.(3)既充分又必要條件,即pq,又有qp.(4)既不充分又不必要條件,即p q,又有q p.2.充分條件與必要條件的判斷:(1)直接利用定義判斷:即“若pq成立,則p是q的充分條
21、件,q是p的必要條件”.(條件與結(jié)論是相對(duì)的)(2)利用等價(jià)命題關(guān)系判斷:“pq”的等價(jià)命題是“qp”。即“若qp成立,則p是q的充分條件,q是p的必要條件”。(五)、鞏固運(yùn)用例1 指出下列各組命題中,p是q的什么條件,q是p的什么條件:(1) p:x-1=0;q:(x-1)(x+2)=0. (2) p:兩條直線平行;q:內(nèi)錯(cuò)角相等.(3) p:ab;q:a2b2 (4)p:四邊形的四條邊相等;q:四邊形是正四邊形.分析:可根據(jù)“若p則q”與“若q則p”的真假進(jìn)行判斷.解:由pq,即x-1=0(x-1)(x+2)=0,知p是q的充分條件,q是p的必要條件.由pq,即兩條直線平行內(nèi)錯(cuò)角相等,知p
22、是q的充要條件,q是p的充要條件;由pq,即ab a2b2,知p不是q的充分條件,q不是p的必要條件;qp,即a2b2ab,知q不是p的充分條件,p不是q的必要條件.綜述:p是q的既不充分條件又不必要條件。由q p,即四邊形是正四邊形四邊形的四條邊相等,知q是p的充分條件,p是q的必要條件. 由pq,即四邊形的四條邊相等四邊形是正四邊形,知p不是q的充分條件,q不是p的必要條件;綜述:p是q的必要不充分條件。以上是直接利用定義由原命題判斷充分條件與必要條件的方法.那么,如果由命題不是很好判斷的話,我們可以換一種方式,根據(jù)互為逆否命題的等價(jià)性,利用它的逆否命題來進(jìn)行判斷.例2(補(bǔ))如圖1,有一個(gè)
23、圓A,在其內(nèi)又含有一個(gè)圓B. 請(qǐng)回答:命題:若“A為綠色”,則“B為綠色”中,“A為綠色”是“B為綠色”的什么條件;“B為綠色”又是“A為綠色”的什么條件. 命題:若“紅點(diǎn)在B內(nèi)”,則“紅點(diǎn)一定在A內(nèi)”中,“紅點(diǎn)在B內(nèi)”是“紅點(diǎn)在A內(nèi)”的什么條件;“紅點(diǎn)在A內(nèi)”又是“紅點(diǎn)在B內(nèi)”的什么條件.解法1(直接判斷):“A為綠色B為綠色”是真的,由定義知,“A為綠色”是“B為綠色”的充分條件;“B為綠色”是“A為綠色”的必要條件. 如圖2,“紅點(diǎn)在B內(nèi)紅點(diǎn)在A內(nèi)”是真的,由定義知,“紅點(diǎn)在B內(nèi)”是“紅點(diǎn)在A內(nèi)”的充分條件;“紅點(diǎn)在A內(nèi)”是“紅點(diǎn)在B內(nèi)”的必要條件.解法2(利用逆否命題判斷):它的逆否命
24、題是:若“B不為綠色”則“A不為綠色”. “B不為綠色 A不為綠色”為真,“A為綠色”是“B為綠色”的充分條件;“B為綠色”是“A為綠色”的必要條件.它的逆否命題是:若“紅點(diǎn)不在A內(nèi)”,則“紅點(diǎn)一定不在B內(nèi)”. 如圖2,“紅點(diǎn)不在A內(nèi)紅點(diǎn)一定不在B內(nèi)”為真,“紅點(diǎn)在B內(nèi)”是“紅點(diǎn)在A內(nèi)”的充分條件;“紅點(diǎn)在A內(nèi)”是“紅點(diǎn)在B內(nèi)”的必要條件. 如何理解充分條件與必要條件中的“充分”和“必要”呢?下面我們以例2為例來說明.先說充分性:說條件是充分的,也就是說條件是充足的,條件是足夠的,條件是足以保證的.例如,說“A為綠色”是“B為綠色”的一個(gè)充分條件,就是說“A為綠色”,它足以保證“B為綠色”.它
25、符合上述的“若p則q”為真(即pq)的形式.再說必要性:必要就是必須,必不可少.從例2的圖可以看出,如果“B為綠色”,A可能為綠色,A也可能不為綠色.但如果“B不為綠色”,那么“A不可能為綠色”.因此,必要條件簡(jiǎn)單說就是:有它不一定,沒它可不行.它滿足上述的“若非q則非p”為真(即qp)的形式.總之,數(shù)學(xué)上的充分條件、必要條件的“充分”、“必要”兩詞,與日常生活中的“充分”、“必要”意義相近,不過,要準(zhǔn)確理解它們,還是應(yīng)該以數(shù)學(xué)定義為依據(jù).例2的問題,若用集合觀點(diǎn)又怎樣解釋呢?請(qǐng)同學(xué)們想一想.給定兩個(gè)條件p ,q,要判斷p是q的什么條件,也可考慮集合:A=x |x滿足條件q,B=x |x滿足條
26、件pAB,則p為q的充分條件,q為p的必要條件;BA, 則p為q的充要條件,q為p的充要條件;(六)、回顧反思本節(jié)主要學(xué)習(xí)了推斷符號(hào)“”的意義,充分條件與必要條件的概念,以及判斷充分條件與必要條件的方法.(1)若pq(或若qp),則p是q的充分條件;若qp(或若pq),則p是q的必要條件.(2)條件是相互的;(3)p是q的什么條件,有四種回答方式: p是q的充分而不必要條件; p是q的必要而不充分條件; p是q的充要條件; p是q的既不充分也不必要條件。(七)、練習(xí)鞏固:P12 練習(xí) 第1、2、3、4題(八)、作業(yè): P14:習(xí)題1.2A組第1(1)(2),2(1)(2)題注:(1)條件是相互
27、的;(2)p是q的什么條件,有四種回答方式: p是q的充分而不必要條件; p是q的必要而不充分條件; p是q的充要條件; p是q的既不充分也不必要條件五、教后反思:第四課時(shí) 1.2.2充要條件 一、教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):(1)、正確理解充要條件的定義,了解充分而不必要條件, 必要而不充分條件, 既不充分也不必要條件的定義(2)、正確判斷充分不必要條件、 必要不充分條件、充要條件、 既不充分也不必要條件.(3)、通過學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假,2.過程與方法目標(biāo):在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì)3. 情感、態(tài)度與價(jià)值觀:激發(fā)學(xué)生的學(xué)習(xí)
28、熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神二、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):1、正確區(qū)分充要條件;2、正確運(yùn)用“條件”的定義解題難點(diǎn):正確區(qū)分充要條件三、教學(xué)過程(一)、復(fù)習(xí)提問 1.什么叫充分條件?什么叫必要條件?說出“”的含義 2.指出下列各組命題中,“pq”及“qp”是否成立 (1)p:內(nèi)錯(cuò)角相等 q:兩直線平行 (2)p:三角形三邊相等 q:三角形三個(gè)角相等(二)、探析新課1、(通過復(fù)習(xí)提問直接引入課題)充要條件定義:一般地,如果既有pq,又有qp,就記作:pq。 這時(shí),p既是q的充分條件,又是q的必要條件,我們說p是q的充分必要條件,簡(jiǎn)稱充要條件 點(diǎn)明思路:判斷p是q的什
29、么條件,不僅要考查pq是否成立,即若p則q形式命題是否正確,還得考察qp是否成立,即若q則p形式命題是否正確。 2、辨析題:(學(xué)生討論并解答,教師引導(dǎo)并歸納)思考:下列各組命題中,p是q的什么條件:1) p: x是6的倍數(shù)。 q:x是2的倍數(shù)2) p: x是2的倍數(shù)。 q:x是6的倍數(shù)3) p: x是2的倍數(shù),也是3的倍數(shù)。q:x是6的倍數(shù)4) p: x是4的倍數(shù) q:x是6的倍數(shù)總結(jié):1) pq 且q p 則 p是q的充分而不必要條件2) qp 且pq 則p 是q 的必要而不充分條件3) pq 且qp 則q 是p的充要條件4) pq 且qp則 p是 q的既不充分也不必要條件強(qiáng)調(diào):判斷p是q的
30、什么條件,不僅要考慮pq是否成立,同時(shí)還要考慮qp是否成立。且p是q的什么條件,以上四種情況必具其一.3、鞏固強(qiáng)化例題:指出下列各命題中,p是q的什么條件:1) p:x1 q:x22) p:x5 q:x-13) p:(x-2)(x-3)=0 q:x-2=04) p:x=3 q:=95) p:x=1 q:x-1=0解:1) x1 x2 但x2x1 p是q的必要而不充分條件2) x5x-1 但x-1 x5 p是q的充分而不必要條件3) (x-2)(x-3)=0 x-2=0但 x-2=0(x-2)(x-3)=0p是q的必要而不充分條件4) x=3x=9 但x=9 x=3 p是q的充分而不必要條件5)
31、 x= 1x-1=0 且x=1x=1 p是q的充要條件通過例題引導(dǎo)同學(xué)觀察歸納:當(dāng)p、q分別從集A、B合出現(xiàn)時(shí)若AB但B不包含于A,即A 是B的真子集,則p是q的充分而不必要條件;若AB 但A不包含于B, 即B是A的真子集,則p是q的必要而不充分條件;若AB且BA 即A=B 則p是q的充要條件;若A不包含于B,且B不包含于A,則p是q的既不充分也不必要條件總結(jié)判斷p是q的什么條件:方法1:考察pq 及qp 是否成立。即:判斷若p則q形式命題及若q則p形式命題真假.方法2:集合觀點(diǎn)4、拓展聯(lián)系:1)請(qǐng)舉例說明:p是q的充分而不必要條件;p是q的必要而不充分條件p是q的既不充分也不必要條件;p是q
32、的充要條件2)從 “充分而不必要條件” “必要而不充分條件” “充要條件” “既不充分也不必要條件”中選出適當(dāng)一種填空: “aN”是“aZ”的 “a0”是“ab0”的 “x=3x+4”是“x=”的 “四邊相等”是“四邊形是正方形”的3)判斷下列命題的真假: “ab”是“ab”的充分條件;“ab”是“ab”的必要條件;“ab”是“a+cb+c”的充要條件;“ab”是“acbc”的充分條件(點(diǎn)題:舉反例在說明pq或qp時(shí)應(yīng)用)(三)、鞏固提高:(學(xué)生討論,師生共同完成)1、若甲是乙的充分而不必要條件,丙是乙的充要條件,丁是丙的必要而不充分條件,問丁是甲的什么條件?2、求證:關(guān)于X的方程ax+bx+
33、c=0(a0)有兩個(gè)符號(hào)相反且不為零的實(shí)根充要條件是ac0)且p是q的必要而不充分條件,求實(shí)數(shù)m的取值范圍。(點(diǎn)題:依據(jù):若p則q命題與其逆否命題若q則p同真假,由qp且pq,知pq且qp)(四)、小結(jié) (學(xué)生回顧所學(xué)內(nèi)容并小結(jié),教師補(bǔ)充完善)(1) 充要條件:若pq 且qp則p是q的充要條件(2) 判斷p是q 的什么條件,不僅要考察pq是否成立,還要考察qp是否成立(3) 判斷pq是否成立,思路1: 判斷若p則q形式命題真假 ;思路2: 若p則q形式命題真假難判斷時(shí) 判斷其逆否命題真假;思路3: 集合的觀點(diǎn)(五)、作業(yè):P1:習(xí)題1.2A組第1(3)(2),2(3),3題五、教后反思:1.3
34、簡(jiǎn)單的邏輯聯(lián)結(jié)詞第五課時(shí)1.3.1 且與或一、教學(xué)目標(biāo):1.知識(shí)與技能目標(biāo):(1)掌握邏輯聯(lián)結(jié)詞“或、且”的含義;(2)正確應(yīng)用邏輯聯(lián)結(jié)詞“或、且”解決問題;(3)掌握真值表并會(huì)應(yīng)用真值表解決問題。2過程與方法目標(biāo):在觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維的嚴(yán)密性品質(zhì)的培養(yǎng)3.情感態(tài)度價(jià)值觀目標(biāo):激發(fā)學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神二、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“或、且”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容。難點(diǎn):1、正確理解命題“Pq”“Pq”真假的規(guī)定和判定2、簡(jiǎn)潔、準(zhǔn)確地表述命題“Pq”“Pq”. 三、教
35、學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程(一)、引入:在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的數(shù)學(xué)比初中更強(qiáng)調(diào)邏輯性如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯(cuò)誤其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開始接觸一些簡(jiǎn)易邏輯的知識(shí)在數(shù)學(xué)中,有時(shí)會(huì)使用一些聯(lián)結(jié)詞,如“且”“或”“非”。在生活用語中,我們也使用這些聯(lián)結(jié)詞,但表達(dá)的含義和用法與數(shù)學(xué)中的含義和用法不盡相同。下面介紹數(shù)學(xué)中使用聯(lián)結(jié)詞“且”“或”“非”聯(lián)結(jié)命題時(shí)的含義和用法。為敘述簡(jiǎn)便,今后常用小寫字母p,q,r,s,表示命
36、題。(注意與上節(jié)學(xué)習(xí)命題的條件p與結(jié)論q的區(qū)別)(二)、探析新課1、思考、分析:?jiǎn)栴}1:下列各組命題中,三個(gè)命題間有什么關(guān)系?(1)12能被3整除;12能被4整除;12能被3整除且能被4整除。(2)27是7的倍數(shù);27是9的倍數(shù);27是7的倍數(shù)或是9的倍數(shù)。學(xué)生很容易看到,在第(1)組命題中,命題是由命題使用聯(lián)結(jié)詞“且”聯(lián)結(jié)得到的新命題,在第(2)組命題中,命題是由命題使用聯(lián)結(jié)詞“或”聯(lián)結(jié)得到的新命題,。問題2:以前我們有沒有學(xué)習(xí)過象這樣用聯(lián)結(jié)詞“且”或“或”聯(lián)結(jié)的命題呢?你能否舉一些例子?例如:命題p:菱形的對(duì)角線相等且菱形的對(duì)角線互相平分。命題q:三條邊對(duì)應(yīng)成比例的兩個(gè)三角形相似或兩個(gè)角相
37、等的兩個(gè)三角形相似。2、歸納定義一般地,用聯(lián)結(jié)詞“且”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,記作pq讀作“p且q”。一般地,用聯(lián)結(jié)詞“或”把命題p和命題q聯(lián)結(jié)起來,就得到一個(gè)新命題,記作pq,讀作“p或q”。命題“pq”與命題“pq”即,命題“p且q”與命題“p或q”中的“且”字與“或” 字與下面兩個(gè)命題中的“且” 字與“或” 字的含義相同嗎?(1)若 xA且xB,則xAB。(2)若 xA或xB,則xAB。定義中的“且”字與“或” 字與兩個(gè)命題中的“且” 字與“或” 字的含義是類似。但這里的邏輯聯(lián)結(jié)詞“且”與日常語言中的“和”,“并且”,“以及”,“既又”等相當(dāng),表明前后兩者同時(shí)兼有,同
38、時(shí)滿足, 邏輯聯(lián)結(jié)詞“或”與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.說明:符號(hào)“”與“”開口都是向下,符號(hào)“”與“”開口都是向上。注意:“p或q”,“p且q”,命題中的“p”、“q”是兩個(gè)命題,而原命題,逆命題,否命題,逆否命題中的“p”,“q”是一個(gè)命題的條件和結(jié)論兩個(gè)部分.3、命題“pq”與命題“pq”的真假的規(guī)定你能確定命題“pq”與命題“pq”的真假嗎?命題“pq”與命題“pq”的真假和命題p,q的真假之間有什么聯(lián)系?引導(dǎo)學(xué)生分析前面所舉例子中命題p,q以及命題pq的真假性,概括出這三個(gè)命題的真假之間的關(guān)系的一般規(guī)律。例如:在上面的例子中,第(1)組命
39、題中,都是真命題,所以命題是真命題。第(2)組命題中,是假命題,是真命題,但命題是真命題。pqpq真真真真假假假真假假假假pqpq真真真真假真假真真假假假(即一假則假) (即一真則真)一般地,我們規(guī)定: 當(dāng)p,q都是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題中有一個(gè)命題是假命題時(shí),pq是假命題;當(dāng)p,q兩個(gè)命題中有一個(gè)是真命題時(shí),pq是真命題;當(dāng)p,q兩個(gè)命題都是假命題時(shí),pq是假命題。(三)、例題例1:將下列命題分別用“且”與“或” 聯(lián)結(jié)成新命題“pq” 與“pq”的形式,并判斷它們的真假。(1)p:平行四邊形的對(duì)角線互相平分,q:平行四邊形的對(duì)角線相等。(2)p:菱形的對(duì)角線互相垂直,q:菱
40、形的對(duì)角線互相平分;(3)p:35是15的倍數(shù),q:35是7的倍數(shù).解:(1)pq:平行四邊形的對(duì)角線互相平分且平行四邊形的對(duì)角線相等.也可簡(jiǎn)寫成平行四邊形的對(duì)角線互相平分且相等.pq: 平行四邊形的對(duì)角線互相平分或平行四邊形的對(duì)角線相等. 也可簡(jiǎn)寫成平行四邊形的對(duì)角線互相平分或相等.由于p是真命題,且q也是真命題,所以pq是真命題, pq也是真命題(2)pq:菱形的對(duì)角線互相垂直且菱形的對(duì)角線互相平分. 也可簡(jiǎn)寫成菱形的對(duì)角線互相垂直且平分.pq: 菱形的對(duì)角線互相垂直或菱形的對(duì)角線互相平分. 也可簡(jiǎn)寫成菱形的對(duì)角線互相垂直或平分.由于p是真命題,且q也是真命題,所以pq是真命題, pq也是
41、真命題(3)pq:35是15的倍數(shù)且35是7的倍數(shù). 也可簡(jiǎn)寫成35是15的倍數(shù)且是7的倍數(shù).pq: 35是15的倍數(shù)或35是7的倍數(shù). 也可簡(jiǎn)寫成35是15的倍數(shù)或是7的倍數(shù).由于p是假命題, q是真命題,所以pq是假命題, pq是真命題說明,在用且或或聯(lián)結(jié)新命題時(shí),如果簡(jiǎn)寫,應(yīng)注意保持命題的意思不變例2:選擇適當(dāng)?shù)倪壿嬄?lián)結(jié)詞“且”或“或”改寫下列命題,并判斷它們的真假。(1)1既是奇數(shù),又是素?cái)?shù);(2)2是素?cái)?shù)且3是素?cái)?shù);(3)22解略例3、判斷下列命題的真假;(1)6是自然數(shù)且是偶數(shù);(2)是A的子集且是A的真子集;(3)集合A是AB的子集或是AB的子集;(4)周長相等的兩個(gè)三角形全等或
42、面積相等的兩個(gè)三角形全等解略(四)、練習(xí):2 練習(xí)第1 , 2題(五)、課堂總結(jié):(1)掌握邏輯聯(lián)結(jié)詞“或、且”的含義;(2)正確應(yīng)用邏輯聯(lián)結(jié)詞“或、且”解決問題;(3)掌握真值表并會(huì)應(yīng)用真值表解決問題pqPqPq真真真真真假假真假真假真假假假假(六)、作業(yè):P20:習(xí)題.組第1、2題五、教后反思:第六課時(shí) 1.3.2 非一、教學(xué)目標(biāo)1.知識(shí)與技能目標(biāo):(1)掌握邏輯聯(lián)結(jié)詞“非”的含義;(2)正確應(yīng)用邏輯聯(lián)結(jié)詞“非”解決問題;(3)掌握真值表并會(huì)應(yīng)用真值表解決問題2過程與方法目標(biāo):觀察和思考中,在解題和證明題中,本節(jié)課要特別注重學(xué)生思維能力中嚴(yán)密性品質(zhì)的培養(yǎng)3.情感態(tài)度價(jià)值目標(biāo):激發(fā)學(xué)生的學(xué)習(xí)
43、熱情,激發(fā)學(xué)生的求知欲,培養(yǎng)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,培養(yǎng)積極進(jìn)取的精神二、教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):通過數(shù)學(xué)實(shí)例,了解邏輯聯(lián)結(jié)詞“非”的含義,使學(xué)生能正確地表述相關(guān)數(shù)學(xué)內(nèi)容.難點(diǎn): 1、正確理解命題 “P”真假的規(guī)定和判定2、簡(jiǎn)潔、準(zhǔn)確地表述命題 “P”.三、教學(xué)方法:探析歸納,講練結(jié)合三、教學(xué)過程:(一)、思考、分析問題1:下列各組命題中的兩個(gè)命題間有什么關(guān)系?(1) 35能被5整除; 35不能被5整除;(2) 方程x2+x+1=0有實(shí)數(shù)根。 方程x2+x+1=0無實(shí)數(shù)根。學(xué)生很容易看到,在每組命題中,命題是命題的否定。(二)、歸納定義1、定義:一般地,對(duì)一個(gè)命題p全盤否定,就得到一個(gè)新命題,記作p;讀作
44、“非p”或“p的否定”。2、命題“p”與命題p的真假間的關(guān)系命題“p”與命題p的真假之間有什么聯(lián)系?引導(dǎo)學(xué)生分析前面所舉例子中命題p與命題p的真假性,概括出這兩個(gè)命題的真假之間的關(guān)系的一般規(guī)律。例如:在上面的例子中,第(1)組命題中,命題是真命題,而命題是假命題。第(2)組命題中,命題是假命題,而命題是真命題。由此可以看出,既然命題P是命題P的否定,那么P與P不能同時(shí)為真命題,也不能同時(shí)為假命題,也就是說,若p是真命題,則p必是假命題;若p是假命題,則p必是真命題;pP真假假真3、命題的否定與否命題的區(qū)別:讓學(xué)生思考:命題的否定與原命題的否命題有什么區(qū)別?命題的否定是否定命題的結(jié)論,而命題的否
45、命題是對(duì)原命題的條件和結(jié)論同時(shí)進(jìn)行否定,因此在解題時(shí)應(yīng)分請(qǐng)命題的條件和結(jié)論。例:如果命題p:5是15的約數(shù),那么命題p:5不是15的約數(shù);p的否命題:若一個(gè)數(shù)不是5,則這個(gè)數(shù)不是15的約數(shù)。顯然,命題p為真命題,而命題p的否定p與否命題均為假命題。(三)、例題分析例1 寫出下表中各給定語的否定語。若給定語為等于大于是都是至多有一個(gè)至少有一個(gè)其否定語分別為 分析:“等于”的否定語是“不等于”;“大于”的否定語是“小于或者等于”;“是”的否定語是“不是”;“都是”的否定語是“不都是”;“至多有一個(gè)”的否定語是“至少有兩個(gè)”;“至少有一個(gè)”的否定語是“一個(gè)都沒有”。例2:寫出下列命題的否定,判斷下列
46、命題的真假(1)p:y sinx 是周期函數(shù);(2)p:32;(3)p:空集是集合A的子集。解析:(1)P:y sinx不是周期函數(shù);假命題;(2)P:32;真命題;(3)P:空集不是集合A的子集;假命題。(四)、練習(xí)鞏固:P20 練習(xí)第3題(五)、小結(jié)()正確理解命題 “P”真假的規(guī)定和判定()簡(jiǎn)潔、準(zhǔn)確地表述命題 “P”.(六)、作業(yè)P20:習(xí)題.組第3題五、教后反思:第七課時(shí) 簡(jiǎn)單的邏輯聯(lián)結(jié)詞(一)或且非一、教學(xué)目標(biāo):了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義,理解復(fù)合命題的結(jié)構(gòu).二、教學(xué)重點(diǎn):邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義及復(fù)合命題的構(gòu)成。教學(xué)難點(diǎn):對(duì)“或”的含義的理解;三、教
47、學(xué)方法:探析歸納,講練結(jié)合四、教學(xué)過程(一)、創(chuàng)設(shè)情境:前面我們學(xué)習(xí)了命題的概念、命題的構(gòu)成和命題的形式等簡(jiǎn)單命題的基本框架。本節(jié)內(nèi)容,我們將學(xué)習(xí)一些簡(jiǎn)單命題的組合,并學(xué)會(huì)判斷這些命題的真假。問題1:下列語句是命題嗎?如果不是,請(qǐng)你將它改為命題的形式115 3是15的約數(shù)嗎? 0.7是整數(shù) x8 (二)、活動(dòng)嘗試是命題,且為真;不是陳述句,不是命題,改為是3是15的約數(shù),則為真;是假命題 是陳述句的形式,但不能判斷正確與否。改為x20,則為真;例如,x2,x-5=3,(x+y)(x-y)=0.這些語句中含有變量x或y,在沒有給定這些變量的值之前,是無法確定語句真假的.這種含有變量的語句叫做開語
48、句(有的邏輯書也稱之為條件命題)。我們不要在判斷一個(gè)語句是不是命題上下功夫,因?yàn)檫@個(gè)工作過于復(fù)雜,只要能從正面的例子了解命題的概念就可以了。(三)、師生探究問題2:(1)6可以被2或3整除;(2)6是2的倍數(shù)且6是3的倍數(shù);(3)不是有理數(shù);上述三個(gè)命題前面的命題在結(jié)構(gòu)上有什么區(qū)別?比前面的命題復(fù)雜了,且(1)和(2)明顯是由兩個(gè)簡(jiǎn)單的命題組合成的新的比較復(fù)雜的命題。命題(1)中的“或”與集合中并集的定義:AB=x|xA或xB的“或”意義相同.命題(2)中的“且”與集合中交集的定義:AB=x|xA且xB的“且”意義相同.命題(3)中的“非”顯然是否定的意思,即“不是有理數(shù)”是對(duì)命題是有理數(shù)”進(jìn)
49、行否定而得出的新命題.(四)、抽象概括1. 邏輯連接詞:命題中的“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞2. 復(fù)合命題的構(gòu)成:簡(jiǎn)單命題:不含有邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題復(fù)合命題:由簡(jiǎn)單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題3.復(fù)合命題構(gòu)成形式的表示:常用小寫拉丁字母p、q、r、s表示簡(jiǎn)單命題. 復(fù)合命題的構(gòu)成形式是:p或q;p且q;非p. 即:p或q 記作 pq p且q 記作 pq 非p (命題的否定) 記作 p釋義:“p或q”是指p,q中的任何一個(gè)或兩者.例如,“xA或xB”,是指x可能屬于A但不屬于B(這里的“但”等價(jià)于“且”),x也可能不屬于A但屬于B,x還可能既屬于A又屬于B
50、(即xAB);又如在“p真或q真”中,可能只有p真,也可能只有q真,還可能p,q都為真.“p且q”是指p,q中的兩者.例如,“xA且xB”,是指x屬于A,同時(shí)x也屬于B(即xAB).“非p”是指p的否定,即不是p. 例如,p是“xA”,則“非p”表示x不是集合A的元素(即x).(五)、鞏固運(yùn)用:例1:指出下列復(fù)合命題的形式及構(gòu)成它的簡(jiǎn)單命題:(1)24既是8的倍數(shù),也是6的倍數(shù);(2)李強(qiáng)是籃球運(yùn)動(dòng)員或跳高運(yùn)動(dòng)員;(3)平行線不相交解:(1)中的命題是p且q的形式,其中p:24是8的倍數(shù);q:24是6的倍數(shù).(2)的命題是p或q的形式,其中p:李強(qiáng)是籃球運(yùn)動(dòng)員;q:李強(qiáng)是跳高運(yùn)動(dòng)員.(3)命題
51、是非p的形式,其中p:平行線相交。例2: 分別指出下列復(fù)合命題的形式(1)87;(2)2是偶數(shù)且2是質(zhì)數(shù);(3)不是整數(shù);解:(1)是“”形式,:,:8=7;(2)是“”形式,:2是偶數(shù),:2是質(zhì)數(shù);(3)是“”形式,:是整數(shù);例3:寫出下列命題的非命題:(1)p:對(duì)任意實(shí)數(shù)x,均有x22x+10;(2)q:存在一個(gè)實(shí)數(shù)x,使得x29=0(3)“ABCD”且“AB=CD”;(4)“ABC是直角三角形或等腰三角形”解:(1)存在一個(gè)實(shí)數(shù)x,使得x22x+10;(2)不存在一個(gè)實(shí)數(shù)x,使得x29=0; (3)AB不平行于CD或ABCD;(4)原命題是“p或q”形式的復(fù)合命題,它的否定形式是:ABC
52、既不是直角三角形又不是等腰三角形復(fù)合命題的構(gòu)成要注意:(1)“p或q”、“p且q”的兩種復(fù)合命題中的p和q可以是毫無關(guān)系的兩個(gè)簡(jiǎn)單命題(2)“非p”這種復(fù)合命題又叫命題的否定;是對(duì)原命題的關(guān)鍵詞進(jìn)行否定。 下面給出一些關(guān)鍵詞的否定:正面語詞或等于大于小于是都是至少一個(gè)至多一個(gè)否定且不等于不大于(小于等于)不小于(大于等于)不是不都是一個(gè)也沒有至少兩個(gè)(六)、回顧反思:本節(jié)課討論了簡(jiǎn)單命題與復(fù)合命題的構(gòu)成,以及邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義。需要注意的是否命題的關(guān)鍵詞的否定是問題的核心。(七)、作業(yè)布置:1命題“方程x22的解是x是( )A簡(jiǎn)單命題B含“或”的復(fù)合命題C含“且”的復(fù)合命題D含“非”的復(fù)合命題2用“或”“且”“非”填空,使命題成為真命題:(1)xAB,則xA_xB;(2)xAB,則xA_xB;(3)a、bR,a0_b0,則ab03把下列寫法改寫成復(fù)合命題“p或q”“p且q”或“非p”的形式:(1)(a2)(a+2)=0;(2);(3)ab04已知命題p:aA,q:aB,試寫出命題“p或q”“p且q”
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國外影袋專用背帶市場(chǎng)調(diào)查研究報(bào)告
- 2024年中國城市環(huán)境標(biāo)識(shí)市場(chǎng)調(diào)查研究報(bào)告
- 圓形件塑料課程設(shè)計(jì)
- 托班捉迷藏課程設(shè)計(jì)
- 山東女子學(xué)院《電磁場(chǎng)與天線A》2023-2024學(xué)年第一學(xué)期期末試卷
- 影視作品剪輯課程設(shè)計(jì)
- 微營銷課程設(shè)計(jì)
- 春天你好課程設(shè)計(jì)特色
- 幼兒園美麗特色課程設(shè)計(jì)
- 文成龍川古街課程設(shè)計(jì)
- 人教版三年級(jí)上冊(cè)音樂《第一單元唱歌 快樂的do re mi 》說課稿
- 職業(yè)院?!敖鹫n”建設(shè)方案
- 施工進(jìn)度計(jì)劃分析
- CJT 394-2018 電磁式燃?xì)饩o急切斷閥
- 青海省2024年中考化學(xué)真題【附真題答案】
- 中央2024年應(yīng)急管理部宣傳教育中心招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 學(xué)前教育普及普惠督導(dǎo)評(píng)估內(nèi)容和標(biāo)準(zhǔn)量化評(píng)分表
- 醫(yī)療護(hù)理核心技術(shù)操作專項(xiàng)規(guī)程
- 警務(wù)崗?fù)そㄔO(shè)合同
- 江蘇省南通市海安市2023-2024學(xué)年六年級(jí)下學(xué)期期末綜合試卷
- 學(xué)校數(shù)字化教育資源建設(shè)實(shí)施方案
評(píng)論
0/150
提交評(píng)論