




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省合肥市四十五中學芙蓉分校八年級數(shù)學第二學期期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.為了增強學生體質,學校發(fā)起評選“健步達人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.42.如圖,平行四邊形ABCD的對角線AC與BD相交于點O,AE⊥BC于E,AB=,AC=2,BD=4,則AE的長為()A. B. C. D.3.如圖所示,已知P、R分別是四邊形ABCD的邊BC、CD上的點,E、F分別是PA、PR的中點,點P在BC上從B向C移動,點R不動,那么EF的長()A.逐漸增大 B.逐漸變小C.不變 D.先增大,后變小4.下列代數(shù)式屬于分式的是()A. B. C. D.5.下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是()A.48 B.63 C.80 D.996.下面式子從左邊到右邊的變形屬于因式分解的是().A.x2-x-2=x(x一1)-2 B.C.(x+1)(x—1)=x2-1 D.7.下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.(A) B.(B) C.(C) D.(D)8.如圖,在菱形中,,點、分別為、上的動點,,點從點向點運動的過程中,的長度()A.逐漸增加 B.逐漸減小C.保持不變且與的長度相等 D.保持不變且與的長度相等9.如圖,菱形中,對角線、相交于點,、分別是邊、的中點,連接、、,則下列敘述正確的是()A.和都是等邊三角形B.四邊形和四邊形都是菱形C.四邊形與四邊形是位似圖形D.且10.如圖,過點作軸的垂線,交直線于點;點與點關于直線對稱;過點作軸的垂線,交直線于點;點與點關于直線對稱;過點作軸的垂線,交直線于點;按此規(guī)律作下去,則點的坐標為A.(2n,2n-1) B.(,) C.(2n+1,2n) D.(,)二、填空題(每小題3分,共24分)11.如果關于x的方程kx2﹣6x+9=0有兩個相等的實數(shù)根,那么k的值為_____.12.當___________________時,關于的分式方程無解13.八年級兩個班一次數(shù)學考試的成績?nèi)缦拢喊耍?)班46人,平均成績?yōu)?6分;八(2)班54人,平均成績?yōu)?0分,則這兩個班的平均成績?yōu)開_分.14.如圖,有一四邊形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,則四邊形ABCD的面積為_______.15..若2m=3n,那么m︰n=.16.如圖,C為線段AB上的一點,△ACM、△CBN都是等邊三角形,若AC=3,BC=2,則△MCD與△BND的面積比為.17.若直角三角形兩邊的長分別為a、b且滿足+|b-4|=0,則第三邊的長是
_________.18.如圖,在平行四邊形ABCD中,以頂點A為圓心,AD長為半徑,在AB邊上截取AE=AD,用尺規(guī)作圖法作出∠BAD的角平分線AG,若AD=5,DE=6,則AG的長是_________________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,直線l1:分別與x軸、y軸交于點B、C,且與直線l2:交于點A.(1)求出點A的坐標(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式(3)在(2)的條件下,設P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.20.(6分)計算:(1)(2)()()21.(6分)我縣某中學開展“慶十一”愛國知識競賽活動,九年級(1)、(2)班各選出名選手參加比賽,兩個班選出的名選手的比賽成績(滿分為100分)如圖所示。(1)根據(jù)圖示填寫如表:班級中位數(shù)(分)眾數(shù)(分)九(1)85九(2)80(2)請你計算九(1)和九(2)班的平均成績各是多少分。(3)結合兩班競賽成績的平均數(shù)和中位數(shù),分析哪個班級的競賽成績較好(4)請計算九(1)、九(2)班的競賽成績的方差,并說明哪個班的成績比較穩(wěn)定?22.(8分)如圖,直線與直線和直線分別交于點(在的上方).直線和直線交于點,點的坐標為;求線段的長(用含的代數(shù)式表示);點是軸上一動點,且為等腰直角三角形,求的值及點的坐標.23.(8分)上午6:00時,甲船從M港出發(fā),以80和速度向東航行。半小時后,乙船也由M港出發(fā),以相同的速度向南航行。上午8:00時,甲、乙兩船相距多遠?要求畫出符合題意的圖形.24.(8分)某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折和成綜合成績(綜合成績的滿分仍為100分)(1)這6名選手筆試成績的中位數(shù)是分,眾數(shù)是分.(2)現(xiàn)得知1號選手的綜合成績?yōu)?8分,求筆試成績和面試成績各占的百分比.(3)求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.25.(10分)如圖,矩形的對角線與相交點分別為的中點,求的長度.26.(10分)解不等式x-52
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.2、D【解析】
由勾股定理的逆定理可判定△BAC是直角三角形,繼而根據(jù)求出平行四邊形ABCD的面積即可求解.【詳解】解:∵AC=2,BD=4,四邊形ABCD是平行四邊形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故選:D.【點睛】本題考查了勾股定理的逆定理和平行四邊形的性質,能得出△BAC是直角三角形是解此題的關鍵.3、C【解析】
根據(jù)三角形的中位線的定理,首先表示EF的長度,再根據(jù)AR是定值,從而可得EF是定值.【詳解】解:∵E、F分別是PA、PR的中點,∴EF=AR,∴EF的長不變,故選:C.【點睛】本題主要考查三角形的中位線的性質,關鍵在于表示變化的直線.4、A【解析】
形如(A、B均為整式,B中有字母,)的式子是分式,根據(jù)分式的定義解答.【詳解】根據(jù)分式的定義得到:是分式,、、均不是分式,故選:A.【點睛】此題考查分式的定義,熟記定義掌握定義中的A及B的要求是解答問題的關鍵.5、C【解析】
解決這類問題首先要從簡單圖形入手,抓住隨著“編號”或“序號”增加時,后一個圖形與前一個圖形相比,在數(shù)量上增加(或倍數(shù))情況的變化,找出數(shù)量上的變化規(guī)律,從而推出一般性的結論.【詳解】∵第1個圖共有3個小正方形,3=1×3;第2個圖共有8個小正方形,8=2×34;第3個圖共有15個小正方形,15=3×5;第4個圖共有24個小正方形,24=4×6;…∴第8個圖共有8×10=80個小正方形;故選C.【點睛】本題考查了規(guī)律型---圖形類規(guī)律與探究,要求學生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應用發(fā)現(xiàn)的規(guī)律解決問題.6、B【解析】
根據(jù)因式分解的意義求解即可.【詳解】A、沒把多項式轉化成幾個整式積的形式,故A不符合題意;B、把多項式轉化成幾個整式積的形式,故B符合題意;C、是整式的乘法,故C不符合題意;D、是整式的乘法,故D不符合題意;故選B.【點睛】本題考查了因式分解的意義,把多項式轉化成幾個整式積的形式.7、C【解析】試題解析:A、是中心對稱圖形,不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;C、既是軸對稱圖形又是中心對稱圖形,故本選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選C.8、D【解析】【分析】如圖,連接BD,由菱形的性質以及∠A=60°,可得△BCD是等邊三角形,從而可得BD=BC,再通過證明△BCF≌BDE,從而可得CF=DE,繼而可得到AE+CF=AB,由此即可作出判斷.【詳解】如圖,連接BD,∵四邊形ABCD是菱形,∠A=60°,∴CD=BC,∠C=∠A=60°,∠ABC=∠ADC==120°,∴∠4=∠DBC=60°,∴△BCD是等邊三角形,∴BD=BC,∵∠2+∠3=∠EBF=60°,∠1+∠2=∠DBC=60°,∴∠1=∠3,在△BCF和△BDE中,,∴△BCF≌BDE,∴CF=DE,∵AE+DE=AB,∴AE+CF=AB,故選D.【點睛】本題考查了菱形的性質,全等三角形的判定與性質,熟練掌握相關的定理與性質是解題的關鍵.9、C【解析】
根據(jù)菱形的性質及直角三角形的性質即可判斷.【詳解】∵、分別是邊、的中點,AC⊥BD,∴MO=AM=BM=AB=NO,∴和都是等腰三角形,A錯誤;∵MN=BD=BO=DO,∴四邊形和四邊形都是平行四邊形,B錯誤;由AM=AB,AO=AC,AN=AD,∴四邊形與四邊形是位似圖形,正確;∵、O分別是邊、AC的中點∴,但是不一定等于CO,故D錯誤.故選C【點睛】此題主要考查菱形的性質,解題的關鍵是熟知中位線定理與直角三角形的性質.10、B【解析】
先根據(jù)題意求出點A2的坐標,再根據(jù)點A2的坐標求出B2的坐標,以此類推總結規(guī)律便可求出點的坐標.【詳解】∵∴∵過點作軸的垂線,交直線于點∴∵∴∵過點作軸的垂線,交直線于點∴∵點與點關于直線對稱∴以此類推便可求得點An的坐標為,點Bn的坐標為故答案為:B.【點睛】本題考查了坐標點的規(guī)律題,掌握坐標點的規(guī)律、軸對稱的性質是解題的關鍵.二、填空題(每小題3分,共24分)11、1.【解析】
根據(jù)題意方程有兩個相等實根可知△=0,代入求值即可解題.【詳解】∵關于x的方程kx2﹣6x+9=0有兩個相等的實數(shù)根,∴△=(﹣6)2﹣4k×9=0且k≠0,解得:k=1,故答案為:1.【點睛】本題考查了一元二次方程根的判別式,本題解題關鍵是根據(jù)題意得到根的情況,代值到判別式即可解題.12、m=1、m=-4或m=6.【解析】
方程兩邊都乘以(x+2)(x-2)把分式方程化為整式方程,當分式方程有增根或分式方程化成的整式方程無解時原分式方程無解,根據(jù)這兩種情形即可計算出m的值.【詳解】解:方程兩邊都乘以(x+2)(x-2)去分母得,
2(x+2)+mx=3(x-2),
整理得(1-m)x=10,∴當m=1時,此整式方程無解,所以原分式方程也無解.
又當原分式方程有增根時,分式方程也無解,∴當x=2或-2時原分式方程無解,
∴2(1-m)=10或-2(1-m)=10,
解得:m=-4或m=6,
∴當m=1、m=-4或m=6時,關于x的方程無解.【點睛】本題考查了分式方程的無解條件.分式方程無解有兩種情形:一是分式方程有增根;二是分式方程化成的整式方程無解.13、82.1【解析】
根據(jù)加權平均數(shù)公式,用(1)、(2)班的成績和除以兩班的總人數(shù)即可得.【詳解】(分,故答案為:82.1.【點睛】本題考查了加權平均數(shù),熟練掌握加權平均數(shù)的計算公式是解題的關鍵.若個數(shù),,,,的權分別是,,,,,則叫做這個數(shù)的加權平均數(shù).14、1【解析】
先根據(jù)勾股定理求出BD,進而判斷出△BCD是直角三角形,最后用面積的和即可求出四邊形ABCD的面積.【詳解】如圖,連接BD,在Rt△ABD中,AB=3,DA=4,根據(jù)勾股定理得,BD=5,在△BCD中,BC=12,CD=13,BD=5,∴BC2+BD2=122+52=132=CD2,∴△BCD為直角三角形,∴S四邊形ABCD=S△ABD+S△BCD=AB?AD+BC?BD=×3×4+×12×5=1故答案為:1.【點睛】此題主要考查了勾股定理及逆定理,三角形的面積公式,解本題的關鍵是判斷出△BCD是直角三角形.15、3︰2【解析】
根據(jù)比例的性質將式子變形即可.【詳解】,,故答案為:3︰2點睛:此題考查比例的知識16、.【解析】試題分析:利用△ACM、△CBN都是等邊三角形,則也是相似三角形,相似比是3:2,再證得△MCD∽△BND,應用相似三角形的面積比等于相似比的平方得△MCD與△BND的面積比為.故答案為:.考點:相似三角形的判定與性質;等邊三角形的性質.17、2或【解析】
首先利用絕對值以及算術平方根的性質得出a,b的值,再利用分類討論結合勾股定理求出第三邊長.【詳解】解:∵+|b-4|=0,∴b=4,a=1.當b=4,a=1時,第三邊應為斜邊,∴第三邊為;當b=4,a=1時,則第三邊可能是直角邊,其長為=2.故答案為:2或.【點睛】本題考查了利用勾股定理解直角三角形的能力,當已知條件中沒有明確哪是斜邊時,要注意討論,一些學生往往忽略這一點,造成丟解.18、1【解析】
首先證明線段AG與線段DE互相垂直平分,利用勾股定理求出AH即可解決問題;【詳解】解:分別以D和E作為圓心,以略長于EH的長度為半徑作弧,交于點F,連接AF并延長,交CD于G,則AG即為∠BAD的角平分線,設AG交BD于H,則AG垂直平分線線段DE(等腰三角形三線合一),∴DH=EH=3,∵四邊形ABCD是平行四邊形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH(等腰三角形三線合一),在Rt△ADH中,AH=,∴AG=2AH=1,故答案為1.【點睛】本題考查作圖-復雜作圖、平行四邊形的性質、等腰三角形的判定和性質等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題;三、解答題(共66分)19、(1)A(6,3);(2)y=﹣x+6;(3)存在滿足條件的點的P,其坐標為(6,0)或(3,﹣3)或(,+6).【解析】
(1)把x=0,y=0分別代入直線L1,即可求出y和x的值,即得到B、C的坐標,解由直線BC和直線OA的方程組即可求出A的坐標;(2)設D(x,x),代入面積公式即可求出x,即得到D的坐標,設直線CD的函數(shù)表達式是y=kx+b,把C(0,6),D(4,2)代入即可求出直線CD的函數(shù)表達式;(3)存在點Q,使以O、C、P、Q為頂點的四邊形是菱形,根據(jù)菱形的性質能寫出Q的坐標.【詳解】(1)解方程組,得,∴A(6,3);(2)設D(x,x),∵△COD的面積為12,∴×6×x=12,解得:x=4,∴D(4,2),設直線CD的函數(shù)表達式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∴直線CD解析式為y=﹣x+6;(3)在直線l1:y=﹣x+6中,當y=0時,x=12,∴C(0,6)存在點P,使以O、C、P、Q為頂點的四邊形是菱形,如圖所示,分三種情況考慮:(i)當四邊形OP1Q1C為菱形時,由∠COP1=90°,得到四邊形OP1Q1C為正方形,此時OP1=OC=6,即P1(6,0);(ii)當四邊形OP2CQ2為菱形時,由C坐標為(0,6),得到P2縱坐標為3,把y=3代入直線直線CQ的解析式y(tǒng)=﹣x+6中,可得3=﹣x+6,解得x=3,此時P2(3,﹣3);(iii)當四邊形OQ3P3C為菱形時,則有OQ3=OC=CP3=P3Q3=6,設P3(x,﹣x+6),∴x2+(﹣x+6﹣6)2=62,解得x=3或x=﹣3(舍去),此時P3(3,﹣3+6);綜上可知存在滿足條件的點的P,其坐標為(6,0)或(3,﹣3)或(,+6).【點睛】本題考查了兩直線相交或平行的問題:兩條直線的交點坐標,就是由這兩條直線相對應的一次函數(shù)表達式所組成的二元一次方程組的解;若兩條直線是平行的關系,那么他們的自變量系數(shù)相同,即k值相同.20、(1);(2)【解析】
(1)直接化簡二次根式進而計算得出答案;
(2)直接利用二次根式的乘法運算法則計算得出答案.【詳解】(1)原式.(2)原式.【點睛】此題主要考查了二次根式的混合運算,正確化簡二次根式是解題關鍵.21、(1);(2)甲:85,乙:85;(3)九(1)班成績較好;(4)九(1)班成績比較穩(wěn)定.【解析】
(1)觀察圖分別寫出九(1)班和九(2)班5名選手的比賽成績,然后根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(2)根據(jù)平均數(shù)公式計算即可;(3)在平均數(shù)相同的情況下,中位數(shù)較高的成績較好;(4)先根據(jù)方差公式分別計算兩個班比賽成績的方差,再根據(jù)方差的意義判斷即可.【詳解】由圖可知:九(1)班5位同學的成績分別為:75,80,85,85,100,所以中位數(shù)為85,眾數(shù)為85;九(2)班5位同學的成績分別為:70,100,100,75,80,排序為:70,75,80,100,100,所以中位數(shù)為80,眾數(shù)為100,即填表如下:班級中位數(shù)(分)眾數(shù)(分)九(1)8585九(2)80100(2)九(1)班的平均成績?yōu)椋ǚ郑?,九?)班的平均成績?yōu)椋ǚ郑?;?)因為兩個班級的平均數(shù)都相同,九(1)班的中位數(shù)較高,所以在平均數(shù)相同的情況下中位數(shù)較高的九(1)班成績較好;(4);因為所以九(1)班成績比較穩(wěn)定.【點睛】本題考查了平均數(shù)、中位數(shù)、眾數(shù)和方差的意義即運用.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.22、(1);(2),且;(3)當時,為等腰直角三角形,此時點坐標為或;當時,為等腰直角三角形,此時點坐標為;當時,為等腰直角三角形,此時點坐標為.【解析】
(1)根據(jù)題意聯(lián)立方程組求解即可.(2)根據(jù)題意,當x=t時,求出D、E點的坐標即可,進而表示DE的長度,注意t的取值范圍.(3)根據(jù)等腰三角形的腰的情況分類討論即可,第一種情況當時;第二種情況當時,第三種情況當時.逐個計算即可.【詳解】解:根據(jù)題意可得:解得:所以可得Q點的坐標為;當時,;當時,.點坐標為,點坐標為.在的上方,,且.為等腰直角三角形.或或.若,時,,如圖1.解得..點坐標為.若,時,如圖2,,解得.點坐標為.若,時,即為斜邊,如圖3,可得,即.解得.的中點坐標為.點坐標為.若,和時,即,即,(不符合題意,舍去)此時直線不存在.若,時,如圖4,即為斜邊,可得,即,解得..點坐標為.綜上所述:當時,為等腰直角三角形,此時點坐標為或;當時,為等腰直角三角形,此時點坐標為;當時,為等腰直角三角形,此時點坐標為;【點睛】本題主要考查一次函數(shù)的相交問題,關鍵在于第三問中,等腰三角形的分類討論問題,等腰三角形的分類討論是常考點,必須熟練掌握計算.23、兩船相距200,畫圖見解析.【解析】
根據(jù)題意畫出圖形,利用勾股定理求解即可.【詳解】解:如圖所示,∵甲船從港口出發(fā),以80的速度向東行駛,∴MA=80×2=160(km),∵半個小時后,乙船也由同一港口出發(fā),以相同的速度向南航行,∴MB=80×1.5=120(km),∴(km),∴上午8:00時,甲、乙兩船相距200km.【點睛】本題考查的是勾股定理的應用,根據(jù)題意畫出圖形,利用數(shù)形結合求解是解答此題的關鍵.24、(1)84.5,84;(2)筆試成績和面試成績各占的百分比是40%,60%;(3)2號選手的綜合成績是89.6(分),3號選手的綜合成績是85.2(分),4號選手
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CCMA 0068-2018瀝青混合料攪拌設備專用振動篩
- T/CCEAT 001-2021電工(煤礦井工)崗位操作人員培訓規(guī)范
- T/CASTEM 1006-2022科技評估報告編制通用要求
- T/CAQI 362-2023寵物食品用益生菌通則
- T/CAQI 145-2020地理標志產(chǎn)品龍口粉絲
- T/CAPA 1-2019脂肪注射移植
- 京東2025年java開發(fā)測試面試題及答案
- 眾安保險java研三面試題及答案
- 定期疫苗檢查管理制度
- 高中消防面試題及答案
- 鐵路項目工程測量培訓
- 工程量清單【模板】
- 急救藥品課件下載
- 綠化苗木供貨售后服務方案
- 時代音畫學習通超星期末考試答案章節(jié)答案2024年
- GB/T 6003.2-2024試驗篩技術要求和檢驗第2部分:金屬穿孔板試驗篩
- 廚余垃圾處理技術
- 智能無人機銷售合同
- 研發(fā)部考勤管理制度
- DLT5155-2016 220kV~1000kV變電站站用電設計技術規(guī)程
- 質量保修卡格式范文
評論
0/150
提交評論