




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高級中學名校試題PAGEPAGE1陜西省漢中市某校2024-2025學年高一下學期第一次月考數(shù)學試卷一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一個是正確的,請把正確的選項填涂在答題卡相應的位置上.1.設(shè)全集,集合,,則()A. B. C. D.【答案】A【解析】令,解得,則,故,因,所以,故A正確.故選:A.2.設(shè),則的大小關(guān)系為(
)A.B.C.D.【答案】D【解析】因為,,,所以.故選:D.3.設(shè)為等差數(shù)列的前項和,已知,則()A.12 B.14 C.16 D.18【答案】B【解析】由等差數(shù)列的片段和性質(zhì)知,成等差數(shù)列,由,得該數(shù)列首項為4,公差為2,所以.故選:B.4.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.【答案】C【解析】因為定義域為,且,所以為偶函數(shù),故排除A,D;當時,,故排除B.故選:C.5.2022年第二十四屆北京冬奧會開幕式上由96片小雪花組成的大雪花驚艷了全世界,數(shù)學中也有一朵美麗的雪花——“科赫雪花”.它的繪制規(guī)則是:任意畫一個正三角形(圖1),并把每一條邊三等分,再以中間一段為邊向外作正三角形,并把這“中間一段”擦掉,形成雪花曲線(圖2),如此繼續(xù)下去形成雪花曲線(圖3),直到無窮,形成雪花曲線.設(shè)雪花曲線的邊長為,邊數(shù)為,周長為,面積為,若,則()A. B. C. D.【答案】B【解析】由題意知,邊長,邊數(shù),周長,面積,所以得:,,所以得:,,因為:,當時,,所以得:,,當時,,也適用,所以:,所以得:,故A項錯誤;所以得:,故B項正確;所以得:,故C項錯誤;所以得:,故D項錯誤.故選:B.6.二次函數(shù)在區(qū)間上為減函數(shù),則的取值范圍為()A. B. C. D.【答案】D【解析】∵二次函數(shù)在上為減函數(shù),.故選:D.7.設(shè)函數(shù)的最小正周期為.若,且對任意,恒成立,則()A. B. C. D.【答案】B【解析】由,且,故,即有,解得,又,,故,即,綜上,.故選:B.8.已知是數(shù)列的前n項和,,,不等式對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.【答案】A【解析】∵,∴,又,∴數(shù)列是首項為1、公差為1的等差數(shù)列,∴,∴,∴①,∴②,①-②得,∴,∴不等式,即,即,∵,當且僅當,即時等號成立,∴.故選:A.二、多項選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.下列說法中正確的是()A.B.第一象限角都是銳角C.在半徑為2的圓中,弧度的圓心角所對的弧長為D.終邊在直線上的角的集合是【答案】AC【解析】,A正確;角也是第一象限角,不是銳角,B錯誤;在半徑為的圓中,弧度的圓心角所對的弧長為,C正確;終邊在上的角的集合是,D錯誤.故選:AC.10.已知是數(shù)列的前項和,且,,則下列結(jié)論正確的是()A.數(shù)列為等比數(shù)列 B.數(shù)列為等比數(shù)列C. D.【答案】ABD【解析】因為,所以,又,所以是等比數(shù)列,A正確;同理,而,所以是等比數(shù)列,B正確;若,則,但,C錯;由A是等比數(shù)列,且公比為2,因此數(shù)列仍然是等比數(shù)列,公比為4,所以,D正確.故選:ABD.11.已知函數(shù),若方程有三個不同的零點,且,則()A.實數(shù)的取值范圍為B.函數(shù)在單調(diào)遞增C.的取值范圍為D.函數(shù)有個零點【答案】BCD【解析】作出函數(shù)的圖像如圖所示:對于A,由圖像可知,實數(shù)的取值范圍是,故A錯誤;對于B,由圖像可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,故B正確;對于C,由圖像可知,,由,即,解得,所以的取值范圍是,故C正確;對于D,由,令,則,解得或,由圖象可知當時,方程有1個解,當時,方程有3個解,所以函數(shù)有4個零點,故D正確.故選:BCD.三、填空題:本題共3小題,每小題5分,共15分.12.函數(shù)的值域為__________.【答案】【解析】因,所以,,所以,即的值域為.13.已知,則________.【答案】【解析】因為,q,已知,將其代入可得:.因為,所以.14.已知各項均為正數(shù)的等比數(shù)列,若,則的取值范圍為________.【答案】.【解析】設(shè)等比數(shù)列的公比為,因為,可得,所以,則,因為,所以,當且僅當時,等號成立,所以,可得,則,所以,即的取值范圍為.四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.已知,求下列各式的值.(1);(2).解:(1).(2).16.已知數(shù)列是單調(diào)遞增等比數(shù)列,數(shù)列是等差數(shù)列,且.(1)求數(shù)列與數(shù)列的通項公式;(2)求數(shù)列的前項和.解:(1)設(shè)等比數(shù)列的公比為,等差數(shù)列的公差為,由得即即,解得或.當時,,不滿足單調(diào)遞增,當時,,滿足單調(diào)遞增,故,所以.又,所以,所以,即數(shù)列與數(shù)列的通項公式為.(2)利用等比數(shù)列前項和公式可得,數(shù)列的前項和為,數(shù)列的前項和為,所以數(shù)列的前項和,即.17.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)將的圖象先向左平移個單位,再將所有點的橫坐標縮短為原來的倍,得到函數(shù)的圖象,求在區(qū)間上的最值及取得最值時的值.解:(1)已知,根據(jù)二倍角公式,可得:,所以的最小正周期.令,,解這個不等式可得,.即得到,.所以的單調(diào)遞增區(qū)間是,.的最小正周期是,單調(diào)遞增區(qū)間是,.(2)先根據(jù)圖象變換規(guī)則求的表達式:將的圖象向左平移個單位,根據(jù)“左加右減”的原則,得到的圖象.再將所有點的橫坐標縮短為原來的倍,根據(jù)“橫坐標伸縮”的原則,得到的圖象.因為,所以,.當,即時,取得最大值,此時取得最大值.當,即時,取得最小值,此時取得最小值.綜上所得,在區(qū)間上的最大值是,此時;最小值是,此時.18.已知函數(shù),不等式解集,(1)設(shè)函數(shù)在上存在零點,求實數(shù)的取值范圍;(2)當時,函數(shù)的最小值為,求實數(shù)的值.解:(1)因為,則,解得,即,又因為,且,在內(nèi)單調(diào)遞增,則在內(nèi)單調(diào)遞增,若函數(shù)在上存在零點,則,解得,所以實數(shù)的取值范圍.(2)因為,令,由可知,則,令,,則在內(nèi)的最小值為,由的圖象開口向上,對稱軸為,可得,解得,即實數(shù)的值為1.19.已知數(shù)列的前項和滿足.(1)求數(shù)列的通項公式;(2)記,是數(shù)列的前項和,若對任意的,不等式都成立,求實數(shù)的取值范圍;(3)記,是否存在互不相等正整數(shù),,,使,,成等差數(shù)列,且,,成等比數(shù)列?如果存在,求出所有符合條件的,,;如果不存在,請說明理由.解:(1)因為數(shù)列的前項和滿足,所以當時,,兩式相減得:,即,又時,,解得:,所以數(shù)列是以3為首項,3為公比的等比數(shù)列,從而.(2)由(1)知:,所以,對任意的,不等式都成立,即,化簡得:,令,因為,故單調(diào)遞減,所以,故,所以,實數(shù)的取值范圍是.(3)由(1)知:,假設(shè)存在互不相等的正整數(shù),,滿足條件,則有.由與得,即,因為,所以.因為,當且僅當時等號成立,這與,,互不相等矛盾.所以不存在互不相等的正整數(shù),,滿足條件.陜西省漢中市某校2024-2025學年高一下學期第一次月考數(shù)學試卷一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一個是正確的,請把正確的選項填涂在答題卡相應的位置上.1.設(shè)全集,集合,,則()A. B. C. D.【答案】A【解析】令,解得,則,故,因,所以,故A正確.故選:A.2.設(shè),則的大小關(guān)系為(
)A.B.C.D.【答案】D【解析】因為,,,所以.故選:D.3.設(shè)為等差數(shù)列的前項和,已知,則()A.12 B.14 C.16 D.18【答案】B【解析】由等差數(shù)列的片段和性質(zhì)知,成等差數(shù)列,由,得該數(shù)列首項為4,公差為2,所以.故選:B.4.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.【答案】C【解析】因為定義域為,且,所以為偶函數(shù),故排除A,D;當時,,故排除B.故選:C.5.2022年第二十四屆北京冬奧會開幕式上由96片小雪花組成的大雪花驚艷了全世界,數(shù)學中也有一朵美麗的雪花——“科赫雪花”.它的繪制規(guī)則是:任意畫一個正三角形(圖1),并把每一條邊三等分,再以中間一段為邊向外作正三角形,并把這“中間一段”擦掉,形成雪花曲線(圖2),如此繼續(xù)下去形成雪花曲線(圖3),直到無窮,形成雪花曲線.設(shè)雪花曲線的邊長為,邊數(shù)為,周長為,面積為,若,則()A. B. C. D.【答案】B【解析】由題意知,邊長,邊數(shù),周長,面積,所以得:,,所以得:,,因為:,當時,,所以得:,,當時,,也適用,所以:,所以得:,故A項錯誤;所以得:,故B項正確;所以得:,故C項錯誤;所以得:,故D項錯誤.故選:B.6.二次函數(shù)在區(qū)間上為減函數(shù),則的取值范圍為()A. B. C. D.【答案】D【解析】∵二次函數(shù)在上為減函數(shù),.故選:D.7.設(shè)函數(shù)的最小正周期為.若,且對任意,恒成立,則()A. B. C. D.【答案】B【解析】由,且,故,即有,解得,又,,故,即,綜上,.故選:B.8.已知是數(shù)列的前n項和,,,不等式對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.【答案】A【解析】∵,∴,又,∴數(shù)列是首項為1、公差為1的等差數(shù)列,∴,∴,∴①,∴②,①-②得,∴,∴不等式,即,即,∵,當且僅當,即時等號成立,∴.故選:A.二、多項選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.下列說法中正確的是()A.B.第一象限角都是銳角C.在半徑為2的圓中,弧度的圓心角所對的弧長為D.終邊在直線上的角的集合是【答案】AC【解析】,A正確;角也是第一象限角,不是銳角,B錯誤;在半徑為的圓中,弧度的圓心角所對的弧長為,C正確;終邊在上的角的集合是,D錯誤.故選:AC.10.已知是數(shù)列的前項和,且,,則下列結(jié)論正確的是()A.數(shù)列為等比數(shù)列 B.數(shù)列為等比數(shù)列C. D.【答案】ABD【解析】因為,所以,又,所以是等比數(shù)列,A正確;同理,而,所以是等比數(shù)列,B正確;若,則,但,C錯;由A是等比數(shù)列,且公比為2,因此數(shù)列仍然是等比數(shù)列,公比為4,所以,D正確.故選:ABD.11.已知函數(shù),若方程有三個不同的零點,且,則()A.實數(shù)的取值范圍為B.函數(shù)在單調(diào)遞增C.的取值范圍為D.函數(shù)有個零點【答案】BCD【解析】作出函數(shù)的圖像如圖所示:對于A,由圖像可知,實數(shù)的取值范圍是,故A錯誤;對于B,由圖像可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,故B正確;對于C,由圖像可知,,由,即,解得,所以的取值范圍是,故C正確;對于D,由,令,則,解得或,由圖象可知當時,方程有1個解,當時,方程有3個解,所以函數(shù)有4個零點,故D正確.故選:BCD.三、填空題:本題共3小題,每小題5分,共15分.12.函數(shù)的值域為__________.【答案】【解析】因,所以,,所以,即的值域為.13.已知,則________.【答案】【解析】因為,q,已知,將其代入可得:.因為,所以.14.已知各項均為正數(shù)的等比數(shù)列,若,則的取值范圍為________.【答案】.【解析】設(shè)等比數(shù)列的公比為,因為,可得,所以,則,因為,所以,當且僅當時,等號成立,所以,可得,則,所以,即的取值范圍為.四、解答題:本題共5小題,共77分.解答應寫出文字說明、證明過程或演算步驟.15.已知,求下列各式的值.(1);(2).解:(1).(2).16.已知數(shù)列是單調(diào)遞增等比數(shù)列,數(shù)列是等差數(shù)列,且.(1)求數(shù)列與數(shù)列的通項公式;(2)求數(shù)列的前項和.解:(1)設(shè)等比數(shù)列的公比為,等差數(shù)列的公差為,由得即即,解得或.當時,,不滿足單調(diào)遞增,當時,,滿足單調(diào)遞增,故,所以.又,所以,所以,即數(shù)列與數(shù)列的通項公式為.(2)利用等比數(shù)列前項和公式可得,數(shù)列的前項和為,數(shù)列的前項和為,所以數(shù)列的前項和,即.17.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)將的圖象先向左平移個單位,再將所有點的橫坐標縮短為原來的倍,得到函數(shù)的圖象,求在區(qū)間上的最值及取得最值時的值.解:(1)已知,根據(jù)二倍角公式,可得:,所以的最小正周期.令,,解這個不等式可得,.即得到,.所以的單調(diào)遞增區(qū)間是,.的最小正周期是,單調(diào)遞增區(qū)間是,.(2)先根據(jù)圖象變換規(guī)則求的表達式:將的圖象向左平移個單位,根據(jù)“左加右減”的原則,得到的圖象.再將所有點的橫坐標縮短為原來的倍,根據(jù)“橫坐標伸縮”的原則,得到的圖象.因為,所以,.當,即時,取得最大值,此時取得最大值.當,即時,取得最小值,此時取得最小值.綜上所得,在區(qū)間上的最大值是,此時;最小值是,此時.18.已知函數(shù),不等式解集,(1)設(shè)函數(shù)在上存在零點,求實數(shù)的取值范圍;(2)當時,函數(shù)的最小值為,求實數(shù)的值.解:(1)因為,則,解得,即,又因為,且,在內(nèi)單調(diào)遞增,則在內(nèi)單調(diào)遞增,若函數(shù)在上存在零點,則,解得,所以實數(shù)的取值范圍.(2)因為,令,由可知,則,令,,則在內(nèi)的最小值為,由的圖象開口向上,對稱軸為,可得,解得,即實數(shù)的值為1.19.已知數(shù)列的前項和滿足.(1)求數(shù)列的通項公式;(2)記,是數(shù)列的前項和,若
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CIQA 70-2023船用甲醇燃料
- T/CI 263-2024水上裝配式鋼結(jié)構(gòu)棧橋(平臺)施工技術(shù)規(guī)程
- T/CHES 63-2022活塞式調(diào)流調(diào)壓閥技術(shù)導則
- T/CHES 103-2023地下水動態(tài)分析評價技術(shù)指南
- T/CHATA 018-2022基層醫(yī)療衛(wèi)生機構(gòu)結(jié)核感染預防與控制指南
- T/CGCC 59-2021肉皮凍
- T/CFPA 019-2023風管感煙火災探測器系統(tǒng)設(shè)計、施工和驗收規(guī)范
- T/CESA 1255-2023智慧博物館評價方法
- T/CECS 10203-2022建筑材料濕物理性質(zhì)測試方法
- T/CECS 10199-2022裝飾保溫與結(jié)構(gòu)一體化微孔混凝土復合外墻板
- 批判教育學的流派和代表人物及其觀點
- 三年級下學期音樂復習題
- 農(nóng)網(wǎng)配電營業(yè)工復習題
- 電氣畢業(yè)論文-基于-plc自動門控制設(shè)計
- 煉鋼廠風險分級管控清單連鑄區(qū)域
- 新時期農(nóng)村初中語文教學中滲透心理健康教育的研究 論文
- 女性中醫(yī)保健智慧樹知到答案章節(jié)測試2023年暨南大學
- 餐飲員工入職登記表
- GA 1808-2022軍工單位反恐怖防范要求
- -衛(wèi)生資格-副高-護理學-副高-章節(jié)練習-??谱o理學-內(nèi)科疾病患者護理(多選題)(共42題)
- 一帶一路 匠心織竹-計劃書
評論
0/150
提交評論