陽(yáng)光學(xué)院《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
陽(yáng)光學(xué)院《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
陽(yáng)光學(xué)院《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
陽(yáng)光學(xué)院《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
陽(yáng)光學(xué)院《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)陽(yáng)光學(xué)院

《人工智能的數(shù)學(xué)思維》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的預(yù)訓(xùn)練語(yǔ)言模型,如GPT-3,引起了廣泛關(guān)注。假設(shè)要利用預(yù)訓(xùn)練語(yǔ)言模型進(jìn)行特定任務(wù)的微調(diào)。以下關(guān)于預(yù)訓(xùn)練語(yǔ)言模型的描述,哪一項(xiàng)是不正確的?()A.預(yù)訓(xùn)練語(yǔ)言模型在大規(guī)模通用語(yǔ)料上學(xué)習(xí)了語(yǔ)言的通用知識(shí)和模式B.微調(diào)時(shí)可以使用少量的特定任務(wù)數(shù)據(jù),快速適應(yīng)新的任務(wù)C.預(yù)訓(xùn)練語(yǔ)言模型的參數(shù)規(guī)模越大,性能一定越好D.可以根據(jù)具體需求對(duì)預(yù)訓(xùn)練語(yǔ)言模型的輸出進(jìn)行進(jìn)一步的處理和優(yōu)化2、當(dāng)利用人工智能進(jìn)行音樂(lè)創(chuàng)作,生成具有創(chuàng)新性和藝術(shù)價(jià)值的音樂(lè)作品,以下哪種方法和技術(shù)可能會(huì)被運(yùn)用?()A.基于模板的生成B.基于風(fēng)格遷移C.基于生成模型D.以上都是3、人工智能在智能推薦系統(tǒng)中發(fā)揮著關(guān)鍵作用。假設(shè)一個(gè)電商平臺(tái)要利用人工智能為用戶提供個(gè)性化推薦,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過(guò)分析用戶的瀏覽歷史、購(gòu)買行為等數(shù)據(jù),了解用戶的興趣偏好B.利用協(xié)同過(guò)濾算法可以找到與目標(biāo)用戶相似的其他用戶,進(jìn)行推薦C.深度學(xué)習(xí)模型能夠捕捉復(fù)雜的用戶行為模式,提供更精準(zhǔn)的推薦D.智能推薦系統(tǒng)能夠完全滿足用戶的所有需求,不需要用戶進(jìn)一步篩選和選擇4、在人工智能的自動(dòng)駕駛道德決策問(wèn)題中,假設(shè)自動(dòng)駕駛汽車面臨一個(gè)無(wú)法避免的碰撞場(chǎng)景,以下關(guān)于道德決策的描述,正確的是:()A.可以制定一套通用的道德規(guī)則,讓自動(dòng)駕駛汽車在所有情況下遵循B.道德決策應(yīng)該完全由汽車制造商決定,用戶沒(méi)有參與的權(quán)利C.不同的文化和價(jià)值觀可能導(dǎo)致對(duì)自動(dòng)駕駛道德決策的不同看法D.自動(dòng)駕駛汽車的道德決策不會(huì)受到法律和社會(huì)輿論的影響5、當(dāng)利用人工智能進(jìn)行推薦系統(tǒng)的設(shè)計(jì),例如為用戶推薦個(gè)性化的電影或音樂(lè),以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過(guò)濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是6、人工智能中的異常檢測(cè)技術(shù)可以在數(shù)據(jù)中發(fā)現(xiàn)不符合正常模式的樣本。假設(shè)要在網(wǎng)絡(luò)流量數(shù)據(jù)中檢測(cè)異常行為,以下哪個(gè)因素對(duì)于檢測(cè)算法的選擇影響最大?()A.數(shù)據(jù)的維度B.異常行為的類型C.數(shù)據(jù)的分布特征D.計(jì)算資源的可用性7、在開(kāi)發(fā)一個(gè)能夠與人類進(jìn)行自然流暢對(duì)話的人工智能聊天機(jī)器人時(shí),不僅要理解用戶的輸入,還要生成合理且富有邏輯的回復(fù)。為了實(shí)現(xiàn)這一目標(biāo),以下哪個(gè)方面的技術(shù)是至關(guān)重要的?()A.語(yǔ)言模型的訓(xùn)練B.對(duì)話管理策略C.情感分析能力D.知識(shí)圖譜的構(gòu)建8、在人工智能的對(duì)話系統(tǒng)中,假設(shè)需要根據(jù)用戶的上下文和歷史對(duì)話信息生成連貫且有針對(duì)性的回復(fù)。以下哪種方法能夠更好地利用上下文信息?()A.使用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)捕捉序列信息B.只關(guān)注當(dāng)前輸入的文本,不考慮歷史信息C.對(duì)上下文信息進(jìn)行簡(jiǎn)單的統(tǒng)計(jì)分析D.隨機(jī)生成回復(fù),不依賴上下文9、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對(duì)模型的性能有著重要影響。假設(shè)我們要訓(xùn)練一個(gè)用于預(yù)測(cè)股票價(jià)格的模型,以下關(guān)于數(shù)據(jù)的說(shuō)法,哪一項(xiàng)是正確的?()A.越多的數(shù)據(jù)一定能帶來(lái)越好的模型性能B.數(shù)據(jù)中的噪聲和錯(cuò)誤對(duì)模型影響不大C.數(shù)據(jù)的分布和代表性比數(shù)量更重要D.不需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和清洗10、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個(gè)關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個(gè)用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項(xiàng)是不太可取的?()A.基于經(jīng)驗(yàn)和直覺(jué),隨機(jī)選擇一組超參數(shù)進(jìn)行試驗(yàn)B.使用網(wǎng)格搜索或隨機(jī)搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實(shí)踐中常用的超參數(shù)設(shè)置D.利用自動(dòng)超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗(yàn)證集的性能自動(dòng)尋找最優(yōu)超參數(shù)11、在人工智能的文本生成任務(wù)中,除了生成連貫的文字內(nèi)容,還需要考慮語(yǔ)言的邏輯性和合理性。假設(shè)我們要生成一篇新聞報(bào)道,以下關(guān)于文本生成的說(shuō)法,哪一項(xiàng)是正確的?()A.可以完全依靠隨機(jī)生成來(lái)創(chuàng)造新穎的內(nèi)容B.語(yǔ)言模型的規(guī)模越大,生成的質(zhì)量一定越高C.預(yù)訓(xùn)練語(yǔ)言模型結(jié)合微調(diào)可以提高生成效果D.不需要考慮語(yǔ)法和語(yǔ)義的約束12、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類,例如區(qū)分貓、狗、鳥等不同的動(dòng)物類別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度13、圖像識(shí)別是人工智能的一個(gè)重要應(yīng)用領(lǐng)域。假設(shè)一個(gè)安防系統(tǒng)需要通過(guò)攝像頭實(shí)時(shí)識(shí)別出特定的人物或物體。以下關(guān)于圖像識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.深度學(xué)習(xí)算法在圖像識(shí)別中表現(xiàn)出色,能夠自動(dòng)學(xué)習(xí)圖像的特征B.圖像識(shí)別系統(tǒng)需要大量的標(biāo)注數(shù)據(jù)進(jìn)行訓(xùn)練,以提高識(shí)別準(zhǔn)確率C.圖像的光照、角度和背景變化等因素會(huì)對(duì)識(shí)別結(jié)果產(chǎn)生較大影響D.一旦圖像識(shí)別模型訓(xùn)練完成,就無(wú)需再進(jìn)行更新和改進(jìn),可以一直準(zhǔn)確識(shí)別各種新的圖像14、在人工智能的模型評(píng)估中,假設(shè)已經(jīng)有了訓(xùn)練集、驗(yàn)證集和測(cè)試集。以下關(guān)于使用這些數(shù)據(jù)集的方法,哪一項(xiàng)是不正確的?()A.在訓(xùn)練集上訓(xùn)練模型,在驗(yàn)證集上調(diào)整超參數(shù),在測(cè)試集上評(píng)估最終模型的性能B.將訓(xùn)練集、驗(yàn)證集和測(cè)試集混合在一起進(jìn)行訓(xùn)練,以增加數(shù)據(jù)量C.只在訓(xùn)練集上訓(xùn)練模型,然后直接在測(cè)試集上評(píng)估性能D.多次使用測(cè)試集來(lái)評(píng)估模型,以確保結(jié)果的可靠性15、在人工智能的音頻處理中,語(yǔ)音增強(qiáng)是一項(xiàng)重要任務(wù)。假設(shè)要提高在嘈雜環(huán)境中錄制的語(yǔ)音的清晰度,以下關(guān)于語(yǔ)音增強(qiáng)技術(shù)的描述,正確的是:()A.簡(jiǎn)單的濾波方法就能夠完全去除噪聲,恢復(fù)清晰的語(yǔ)音B.語(yǔ)音增強(qiáng)技術(shù)只對(duì)特定類型的噪聲有效,對(duì)復(fù)雜的噪聲環(huán)境無(wú)能為力C.結(jié)合深度學(xué)習(xí)算法和聲學(xué)模型,可以更有效地從噪聲中提取有用的語(yǔ)音信息D.語(yǔ)音增強(qiáng)的效果不受原始語(yǔ)音質(zhì)量和噪聲強(qiáng)度的影響16、在人工智能的文本分類任務(wù)中,假設(shè)要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等。以下關(guān)于特征提取的方法,哪一項(xiàng)是最常用的?()A.使用詞袋模型,將文本表示為詞的頻率向量B.直接將原始文本作為輸入,不進(jìn)行任何特征提取C.運(yùn)用句法分析,提取句子的結(jié)構(gòu)特征D.僅考慮文本的標(biāo)題,忽略正文內(nèi)容17、假設(shè)要開(kāi)發(fā)一個(gè)能夠在復(fù)雜的商業(yè)環(huán)境中進(jìn)行智能決策支持的人工智能系統(tǒng),例如投資決策或市場(chǎng)策略制定,以下哪種技術(shù)和知識(shí)的融合可能是必要的?()A.數(shù)據(jù)分析和領(lǐng)域?qū)<抑R(shí)B.機(jī)器學(xué)習(xí)算法和經(jīng)濟(jì)學(xué)原理C.深度學(xué)習(xí)模型和管理學(xué)理論D.以上都是18、在人工智能的圖像語(yǔ)義分割任務(wù)中,需要將圖像中的每個(gè)像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開(kāi)來(lái)。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語(yǔ)義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對(duì)原始圖像進(jìn)行分割19、人工智能在自動(dòng)駕駛領(lǐng)域的應(yīng)用具有巨大的潛力,但也面臨諸多挑戰(zhàn)。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,以下關(guān)于自動(dòng)駕駛中的人工智能技術(shù)的描述,正確的是:()A.自動(dòng)駕駛汽車完全依賴傳感器數(shù)據(jù)和人工智能算法,不需要人類駕駛員的任何干預(yù)B.人工智能算法能夠在所有復(fù)雜的交通場(chǎng)景中做出完美的決策,不會(huì)出現(xiàn)錯(cuò)誤C.自動(dòng)駕駛系統(tǒng)需要融合多種傳感器數(shù)據(jù),并通過(guò)深度學(xué)習(xí)算法進(jìn)行實(shí)時(shí)的環(huán)境感知和決策制定D.自動(dòng)駕駛中的人工智能技術(shù)已經(jīng)非常成熟,不存在任何安全隱患20、在一個(gè)利用人工智能進(jìn)行智能客服的系統(tǒng)中,為了提高回答的準(zhǔn)確性和全面性,以下哪個(gè)方面的優(yōu)化可能是關(guān)鍵的?()A.知識(shí)庫(kù)的構(gòu)建和更新B.自然語(yǔ)言處理模型的改進(jìn)C.對(duì)話流程的設(shè)計(jì)D.以上都是二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋人工智能在智慧城市建設(shè)和社區(qū)發(fā)展中的作用。2、(本題5分)說(shuō)明人工智能中的可解釋性問(wèn)題。3、(本題5分)解釋凸優(yōu)化和非凸優(yōu)化的概念。4、(本題5分)簡(jiǎn)述線性回歸模型的原理和應(yīng)用。5、(本題5分)說(shuō)明算法偏見(jiàn)的產(chǎn)生和防范。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)考察一個(gè)基于人工智能的智能繪畫人才職業(yè)規(guī)劃系統(tǒng),討論其如何為繪畫人才規(guī)劃職業(yè)道路。2、(本題5分)剖析某智能民間音樂(lè)演奏技巧評(píng)估系統(tǒng)中人工智能的精準(zhǔn)度和提升建議。3、(本題5分)考察某智能玻璃制品質(zhì)量評(píng)估系統(tǒng)中人工智能的缺陷檢測(cè)和質(zhì)量分級(jí)效果。4、(本題5分)以某智能航空訂票系統(tǒng)為例,研究人工智能在票價(jià)預(yù)測(cè)和座位分配中的應(yīng)用。5、(本題5分)考察一個(gè)基于人工智能的智能繪畫作品銷售預(yù)測(cè)系統(tǒng),討論其如何預(yù)測(cè)繪畫作品的銷售情況。四、操作題(本大題共3個(gè)小題,共30分)1、(本題10分)運(yùn)用圖像識(shí)別技術(shù),對(duì)衛(wèi)星圖像中的土地利用類型進(jìn)行分類,如農(nóng)田

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論