




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁錫林郭勒職業(yè)學(xué)院
《人機交互技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能中的可解釋性是一個重要的研究方向。假設(shè)要解釋一個深度學(xué)習(xí)模型的決策過程和輸出結(jié)果,以下關(guān)于模型可解釋性的描述,正確的是:()A.深度學(xué)習(xí)模型的內(nèi)部運作非常復(fù)雜,無法進(jìn)行任何形式的解釋B.特征重要性分析可以幫助理解模型對輸入特征的依賴程度C.可視化技術(shù)只能展示模型的結(jié)構(gòu),不能解釋模型的決策邏輯D.模型可解釋性對于實際應(yīng)用沒有太大意義,只要模型性能好就行2、在人工智能的研究中,遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用于醫(yī)學(xué)圖像分析,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型應(yīng)用于新的醫(yī)學(xué)圖像任務(wù),無需任何調(diào)整B.由于數(shù)據(jù)領(lǐng)域差異較大,遷移學(xué)習(xí)在這種情況下不可能有效C.對原模型進(jìn)行適當(dāng)?shù)奈⒄{(diào),并利用少量的醫(yī)學(xué)圖像數(shù)據(jù)進(jìn)行再訓(xùn)練,可以提高模型在新任務(wù)上的性能D.遷移學(xué)習(xí)只能應(yīng)用于相似的數(shù)據(jù)類型和任務(wù),不能跨越不同領(lǐng)域3、在人工智能的對話系統(tǒng)中,需要實現(xiàn)自然流暢的交互。假設(shè)要開發(fā)一個客服機器人,以下關(guān)于對話系統(tǒng)的描述,正確的是:()A.只要對話系統(tǒng)能夠回答用戶的問題,就不需要考慮回答的方式和語氣B.對話系統(tǒng)可以完全理解用戶的意圖和情感,無需進(jìn)一步的優(yōu)化C.利用大規(guī)模的對話數(shù)據(jù)進(jìn)行訓(xùn)練,并結(jié)合語義理解和生成技術(shù),可以提高客服機器人的對話能力D.對話系統(tǒng)的性能不受語言多樣性和文化差異的影響4、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)正在訓(xùn)練一個用于手寫數(shù)字識別的神經(jīng)網(wǎng)絡(luò),以下關(guān)于防止過擬合的方法,哪一項是最有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少神經(jīng)網(wǎng)絡(luò)的層數(shù)C.使用更復(fù)雜的激活函數(shù)D.不進(jìn)行任何處理,認(rèn)為過擬合不會影響模型性能5、在人工智能的發(fā)展中,模型的評估指標(biāo)至關(guān)重要。以下關(guān)于人工智能模型評估指標(biāo)的描述,不準(zhǔn)確的是()A.準(zhǔn)確率、召回率和F1值常用于分類任務(wù)的評估B.均方誤差(MSE)和平均絕對誤差(MAE)常用于回歸任務(wù)的評估C.評估指標(biāo)的選擇只取決于數(shù)據(jù)的類型,與具體的應(yīng)用場景無關(guān)D.可以結(jié)合多個評估指標(biāo)來全面評估模型的性能6、在深度學(xué)習(xí)中,BatchNormalization的作用是()A.加速訓(xùn)練B.防止過擬合C.提高模型精度D.以上都是7、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來越普及。假設(shè)一個電商平臺要為用戶提供個性化的商品推薦,需要綜合考慮用戶的歷史購買行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘8、人工智能中的聯(lián)邦學(xué)習(xí)技術(shù)旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型的協(xié)同訓(xùn)練。假設(shè)多個機構(gòu)擁有各自的私有數(shù)據(jù),需要共同訓(xùn)練一個模型。以下哪種聯(lián)邦學(xué)習(xí)算法或框架在處理數(shù)據(jù)異構(gòu)和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學(xué)習(xí)B.縱向聯(lián)邦學(xué)習(xí)C.聯(lián)邦遷移學(xué)習(xí)D.以上框架根據(jù)具體情況選擇9、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對模型的訓(xùn)練和性能有著重要的影響。以下關(guān)于數(shù)據(jù)在人工智能中的作用的描述,不正確的是()A.高質(zhì)量、大規(guī)模的數(shù)據(jù)能夠幫助模型學(xué)習(xí)到更準(zhǔn)確和通用的模式B.數(shù)據(jù)清洗和預(yù)處理是提高數(shù)據(jù)質(zhì)量的重要步驟,可以減少噪聲和錯誤C.即使數(shù)據(jù)量較少,通過巧妙的算法設(shè)計和模型架構(gòu),也能訓(xùn)練出性能優(yōu)異的人工智能模型D.數(shù)據(jù)的標(biāo)注工作對于監(jiān)督學(xué)習(xí)非常重要,準(zhǔn)確的標(biāo)注能夠提高模型的學(xué)習(xí)效果10、在人工智能的文本分類任務(wù)中,類別不平衡是一個常見的問題。假設(shè)一個數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運用11、人工智能中的機器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)等。假設(shè)要對一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動將數(shù)據(jù)分為不同的簇C.強化學(xué)習(xí)中的Q-Learning算法,通過與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對未標(biāo)記數(shù)據(jù)進(jìn)行分類12、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實現(xiàn)農(nóng)作物的病蟲害監(jiān)測,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗和判斷,獨立完成病蟲害的防治工作C.由于農(nóng)作物生長環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測設(shè)備越多,人工智能病蟲害監(jiān)測系統(tǒng)的準(zhǔn)確性就越高13、在人工智能的模型壓縮中,假設(shè)需要在不顯著降低模型性能的前提下減少模型的參數(shù)數(shù)量和計算量。以下哪種方法可以實現(xiàn)這一目標(biāo)?()A.剪枝技術(shù),去除不重要的連接和參數(shù)B.量化技術(shù),降低參數(shù)的精度C.知識蒸餾,將大模型的知識傳遞給小模型D.以上都是14、在人工智能的應(yīng)用中,自動駕駛是一個具有挑戰(zhàn)性的領(lǐng)域。假設(shè)一輛自動駕駛汽車需要在復(fù)雜的交通環(huán)境中做出安全、高效的駕駛決策。那么,以下關(guān)于自動駕駛中的人工智能技術(shù),哪一項是不準(zhǔn)確的?()A.需要依靠多種傳感器獲取環(huán)境信息,如攝像頭、激光雷達(dá)等B.基于深度學(xué)習(xí)的目標(biāo)檢測算法可以準(zhǔn)確識別道路上的行人和車輛C.自動駕駛系統(tǒng)一旦訓(xùn)練完成,就不需要再進(jìn)行更新和改進(jìn)D.決策算法需要考慮交通規(guī)則、道德倫理等多方面因素15、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測腫瘤或病變,以下哪種挑戰(zhàn)和問題可能是需要重點解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋支持向量機的基本原理和核函數(shù)的作用。2、(本題5分)簡述醫(yī)療診斷中的人工智能應(yīng)用。3、(本題5分)解釋人工智能在城市規(guī)劃中的影響。4、(本題5分)解釋策略梯度算法的思想。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的Scikit-learn庫,實現(xiàn)AdaBoost算法對鳶尾花數(shù)據(jù)集進(jìn)行分類,調(diào)整迭代次數(shù)等參數(shù)觀察對模型性能的影響。2、(本題5分)在Python中,運用引力搜索算法解決一個約束優(yōu)化問題。定義物體的質(zhì)量和引力計算方式,展示算法的求解過程。3、(本題5分)在Python中,運用強化學(xué)習(xí)算法讓智能體學(xué)習(xí)在一個模擬的供應(yīng)鏈管理系統(tǒng)中優(yōu)化庫存策略。設(shè)計庫存環(huán)境和成本模型,觀察智能體在不同需求波動情況下的策略調(diào)整和成本控制效果。4、(本題5分)運用Python的PyTorch框架,搭建一個卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型,對CIFAR-10數(shù)據(jù)集進(jìn)行圖像分類。使用數(shù)據(jù)增強技術(shù)增加數(shù)據(jù)的多樣性,如隨機旋轉(zhuǎn)、裁剪等,訓(xùn)練模型并保存最優(yōu)模型,在測試集上進(jìn)行驗證。5、(本題5分)運用Python的OpenCV庫,實現(xiàn)對視頻中的人物動作識別和分類。例如區(qū)分跑步、跳躍、行走等動作,結(jié)合姿態(tài)估計和機器學(xué)習(xí)算法實現(xiàn)。四、案例分析題(本大題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 婦產(chǎn)科護理復(fù)習(xí)試題含答案(二)
- 時尚搭配指南表格
- 農(nóng)業(yè)生產(chǎn)網(wǎng)絡(luò)營銷策略與技巧
- 農(nóng)業(yè)休閑旅游產(chǎn)業(yè)可持續(xù)發(fā)展研究報告
- 項目進(jìn)展會議重要事項紀(jì)要
- 智能財稅綜合實訓(xùn) 下篇 第四章工作領(lǐng)域二-任務(wù)三
- 音樂產(chǎn)業(yè)版權(quán)保護及管理手冊
- 醫(yī)療影像處理與診斷應(yīng)用
- 農(nóng)業(yè)保險助力農(nóng)村經(jīng)濟發(fā)展策略方案
- 關(guān)于女大學(xué)生打王者榮耀的調(diào)查
- GB/T 4154-1993氧化鑭
- 水泥混凝土路面試驗檢測的要點
- 運輸供應(yīng)商年度評價表
- 室內(nèi)消防及給排水管道安裝施工方案方案
- 無創(chuàng)呼吸機參數(shù)調(diào)節(jié)課件
- 《過零丁洋》公開課件
- 文件傳閱單范本
- 電工培養(yǎng)計劃表
- 部編版五年級道德與法治下冊課程綱要
- Q∕SY 02006-2016 PVT取樣技術(shù)規(guī)程
- 初中物理公式MicrosoftWord文檔
評論
0/150
提交評論