數(shù)字設(shè)計 第四章 組合邏輯設(shè)計原理學習課件_第1頁
數(shù)字設(shè)計 第四章 組合邏輯設(shè)計原理學習課件_第2頁
數(shù)字設(shè)計 第四章 組合邏輯設(shè)計原理學習課件_第3頁
數(shù)字設(shè)計 第四章 組合邏輯設(shè)計原理學習課件_第4頁
數(shù)字設(shè)計 第四章 組合邏輯設(shè)計原理學習課件_第5頁
已閱讀5頁,還剩72頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Chapter4CombinationalLogicDesignPrinciples本章重點1、開關(guān)代數(shù):公理、定理、定義2、組合電路的分析:組合電路的結(jié)構(gòu)、邏輯表達式、真值表、時序圖等。3、組合電路的綜合(設(shè)計):邏輯抽象定義電路的功能,寫出邏輯表達式,得到實際的電路。2025/2/281數(shù)字邏輯設(shè)計及應(yīng)用CombinationallogiccircuitTheoutputsdependonlyonitscurrentinputs.eachoutputcanbespecifiedbytruthtableorBooleanexpression.2數(shù)字邏輯設(shè)計及應(yīng)用4.1SwitchingAlgebraDealswithbooleanvalues:0,1

Signalvaluesdenotedbyvariables

(X,Y,FRED,etc.)Booleanoperators

:+,·,’1、Axioms3數(shù)字邏輯設(shè)計及應(yīng)用2.SingleVariableTheoremsProofsbyperfectinduction將變量的所有取值代入定理表達式,若等號兩邊始終相等,則得證。自等律0-1律同一律還原律互補律(T1)X+0=X(T1’)X·1=X(T2)X+1=1(T2’)X·0=0(T3)X+X=X(T3’)X·X=X(T4)(X’)’=X(T5)X+X’=1(T5’)X·X’=04數(shù)字邏輯設(shè)計及應(yīng)用3.two-andthree-variabletheoremsParenthesizationororderoftermsinalogicalsumorlogicalproductisirrelevant.T8—logicalmultiplicationdistributesoverlogicaladditionT8’—logicaladditiondistributesoverlogicalmultiplication(T6)X+Y=Y+X(T6’)X·Y=Y·X(交換律)(T7)(X+Y)+Z=X+(Y+Z)

(T7’)(X·Y)·Z=X·(Y·Z)(結(jié)合律)(T8)X·Y+X·Z=X·(Y+Z)(T8’)(X+Y)·(X+Z)=X+Y·Z(分配律)5數(shù)字邏輯設(shè)計及應(yīng)用T9、T9’、T10、T10’:beusedtominimizelogicfunctions.Y·Zand(Y+Z)termaretheredundanttermsintheexpression.Supplement:

A+A’B=A+B(消因律)

A’+AB=A’+B(T9)X+X·Y=X(T9’)X·(X+Y)=X(吸收律)(T10)X·Y+X·Y’=X(T10’)(X+Y)·(X+Y’)=X(組合律)(T11)X·Y+X’·Z+Y·Z=X·Y+X’·Z

(T11’)(X+Y)·(X’+Z)·(Y+Z)=(X+Y)·(X’+Z)

(一致律)6數(shù)字邏輯設(shè)計及應(yīng)用4.n-variabletheoremsT13---

equivalenttransformbetween“AND-NOT”and“NOT-OR”.T13’---equivalenttransformbetween“OR-NOT”and“NOT-AND”.Exp.:G=X’Y+VW’Z———=?(T12)X+X+…+X=X(T12’)X·X·…·X=X(廣義同一律)(T13)(X1·X2·……·Xn)’=X1’+X2’+……+Xn’(T13’)(X1+X2+……+Xn)’=X1’·X2’·……·Xn’(DeMorgantheorems

)DeMorgantheorems7數(shù)字邏輯設(shè)計及應(yīng)用T14—GeneralizedDeMorgan’stheorem,也稱為“反演定理”,getthecomplementofalogicexpression(inversefunction)。

keeptheoriginaloperatingorder;complementallvariables;swapping‘0’and‘1’;swapping‘+’and‘·’(注:如邏輯式中有帶括號的表達式取反,反函數(shù)中保留非號不變。)例:F=[(A·B’+C)·E]’+G’的反函數(shù)。(T14)[F(X1,X2,……,Xn,+,·

)]’=F(X1’,X2’,……Xn’,·,+)8數(shù)字邏輯設(shè)計及應(yīng)用finiteinduction(1)provingthetheoremistrueforn=2;(2)thenprovingthatifthetheoremistrueforn=i,thenitisalsotrueforn=i+1.9數(shù)字邏輯設(shè)計及應(yīng)用5.DualityAnytheoremoridentityinswitchingalgebraremainstrueif0and1areswappedand·and+areswappedthroughout.

alogicexpression:F(X1,X2,……,Xn,+,·

,’)

itsduality:FD=F(X1,X2,……,Xn,·,+,’)

X·Y———X+Y 0———1Exp.:findthedualityexpression.F=(AB+A’C)’+1·Bdualityduality10數(shù)字邏輯設(shè)計及應(yīng)用

relationbetweendualityandtheorem14:

[F(X1,X2,……,Xn,+,·

,’)]’=FD(X1’,X2’,……,Xn’,·,+

,’)正邏輯約定與負邏輯約定互為對偶關(guān)系。正邏輯“與”=負邏輯“或”

正邏輯“或”=負邏輯“與”

正邏輯“與非”=負邏輯“或非”

正邏輯“或非”=負邏輯“與非”11數(shù)字邏輯設(shè)計及應(yīng)用6.UsingswitchingalgebrainminimizinglogicfunctionExp.:(1)F=AD+AD’+AB+A’C+BD+AB’EF+B’EF(2)F=A·(B’+C)’·(BC)’(3)F=AB+AC’+B’C+C’B+CD’+BD’+ADE(F+G)12數(shù)字邏輯設(shè)計及應(yīng)用7.Standardrepresentationoflogicfunctions①truthtable②definitions

(p.197)literal(也可稱作元素、因子)producttermX·Y·Z’,A·B’·G·G,Rsum-of-products(SOP)sumtermC+D+H’,X+X+W’product-of-sums(POS)normalterm(標準項)13數(shù)字邏輯設(shè)計及應(yīng)用n-variablemintermnormalproducttermwithnliterals3-variableX,Y,ZXYZmintermmintermnumber000X’·Y’·Z’m0001X’·Y’·Zm1010X’·Y·Z’m2011X’·Y·Zm3100X·Y’·Z’m4101X·Y’·Zm5110X·Y·Z’m6111X·Y·Zm7onemintermonebinarycombinationonecombinationonlyletonemintermbe1onen-variablemintermrepresentonen-variablecombination.14數(shù)字邏輯設(shè)計及應(yīng)用n-variablemaxtermnormalsumtermwithnliteralsXYZmaxtermmaxtermnumber000X+Y+ZM0001X+Y+Z’M1010X+Y’+ZM2011X+Y’+Z’M3100X’+Y+ZM4101X’+Y+Z’

M5110X’+Y’+ZM6111X’+Y’+Z’M7onemaxtermonecombinationonlyletonemaxtermbe0onebinarycombinationonemaxtermonen-variablemaxtermrepresentonen-variablecombination.15數(shù)字邏輯設(shè)計及應(yīng)用①propertiesofminterma、所有輸入組合取值中,只有一組取值能令特定的某個最小項的值為1。b、任意兩個不同最小項之積為0,mi×mj=0i≠jc、全部最小項之和為1,

②propertiesofmaxterma、所有輸入組合取值中,只有一組取值能令特定的某個最大項的值為0。b、任意兩個不同最大項之和為1,

Mi+Mj=1i≠jc、全部最大項之積為0,③編號相同的最小項和最大項互為反函數(shù)

mi=(Mi)’,

Mj=(mj)’propertiesofmintermandmaxterm16數(shù)字邏輯設(shè)計及應(yīng)用canonicalsumsumofmintermscorrespondingtoinputcombinationforwhichthefunctionproducesa1output.

Exp.

F=?

=X’·Y’·Z’+X’·Y·Z+X·Y’·Z’+X·Y·Z’+X·Y·Z=Σ(0,3,4,6,7)XYZF00010010010001111001101011011111inputoutput17數(shù)字邏輯設(shè)計及應(yīng)用canonicalproductproductofmaxtermscorrespondingtoinputcombinationforwhichthefunctionproducesa0output.F=(X+Y+Z’)·(X+Y’+Z)·(X’+Y+Z’)=∏X,Y,Z(1,2,5)XYZF0001001001000111100110101101111118數(shù)字邏輯設(shè)計及應(yīng)用∴若已知標準和,則集合中剩下的編號就可以構(gòu)建標準積;反之亦然。例:∑XYZ(0、1、2、3)=∏XYZ(4、5、6、7)Conversionbetweenmaxtermlistandmintermlistnvariablelogicfunctionmintermlistktermsmaxtermlistjtermsk

mintermnumbersj

maxtermnumbersComplementsubsetofthe2nnumbersk+j=2n19數(shù)字邏輯設(shè)計及應(yīng)用inversefunctionofacanonicallogicexpression:F=…+mi+mj+…i≠jItsinversefunction:F’=…·Mi·Mj·…

i≠j反之亦然。Representationofalogicfunction

①truthtable②canonicalsum

③mintermlist

④canonicalproduct

⑤maxtermlist20數(shù)字邏輯設(shè)計及應(yīng)用4.2Combinational-CircuitAnalysisAnalyzingsteps:Makesurethatitiscombinationalcircuit.Findinputandoutputvariables,fillthetruthtableaccordingtothecircuit.Canonicalsumorproduct.Minimizingtheequation.Sometime,writethelogicexpressionaccordingtothecircuitdirectly.timingdiagrammaybeneeded.21數(shù)字邏輯設(shè)計及應(yīng)用AnalyzingexampleInputvariable:X,Y,ZOutputvariable:FXYZF00000011010101101000101111001111F=ΣX,Y,Z(1,2,5,7)=X’·Y’·Z+X’·Y·Z’+X·Y’·Z+X·Y·ZORF=ΠX,Y,Z(0,3,4,6)=(X+Y+Z)·(X+Y’+Z’)·(X’+Y+Z)·(X’+Y’+Z)22數(shù)字邏輯設(shè)計及應(yīng)用MinimizingtheexpressionF=ΣX,Y,Z(1,2,5,7)=X’·Y’·Z+X’·Y·Z’+X·Y’·Z+X·Y·Z=X·Z+Y’·Z+X’·Y·Z’ORF=ΠX,Y,Z(0,3,4,6)=(X+Y+Z)·(X+Y’+Z’)·(X’+Y+Z)·(X’+Y’+Z)=(Y+Z)·(X’+Z)·(X+Y’+Z’)WritethelogicexpressionaccordingtothecircuitF=((X+Y’)·Z)+X’·Y·Z’23數(shù)字邏輯設(shè)計及應(yīng)用BasicstructureoflogiccircuitTwotypes①twolevel“AND—OR”;②twolevel“OR—AND”;③twolevel“NAND—NAND”;④twolevel“NOR—NOR”。De’Morgantheorem24數(shù)字邏輯設(shè)計及應(yīng)用“AND-OR”and“NAND-NAND”AND—ORNAND—NANDfirst-levelsecond-level25數(shù)字邏輯設(shè)計及應(yīng)用“OR-AND”and“NOR-NOR”O(jiān)R-ANDNOR-NORfirst-levelsecond-level26數(shù)字邏輯設(shè)計及應(yīng)用Timingdiagram27數(shù)字邏輯設(shè)計及應(yīng)用課堂練習分析如下電路,

1)直接寫出邏輯函數(shù)表達式并化簡

2)列出真值表ABCDF1F2T1T2T3T428數(shù)字邏輯設(shè)計及應(yīng)用4.3Combinational-CircuitSynthesisSynthesissteps:analyzetheworddescription,makesurethatitcouldberealizedbycombinational-circuit;Findallinputandoutputvariable;Usetruthtabletorepresenttheinput-outputlogicrelation;Usekarnaugh-maptominimizethelogicexpression;Givethecircuitdiagram29數(shù)字邏輯設(shè)計及應(yīng)用1、circuitdescriptionsanddesignsExp1:designa4-bitprime-numberdetector.4-bitPrime-numberdetector4-bit

binarynumberN3N2N1N0YesorNoYes:F=1

No:F=0N3N2N1N0F0000000011001010011101000010110110001111N3N2N1N0F0000000010001000011101000010110110001110F=ΣN3,N2,N1,N0(1,2,3,5,7,11,13)30數(shù)字邏輯設(shè)計及應(yīng)用Exp2:alarmcircuit—

alarmcircuitWINDOWDOORGARAGEALARMPANIC1ENABLE1EXITING0SECUREnoSECURE=WINDOW·DOOR·GARAGE31數(shù)字邏輯設(shè)計及應(yīng)用2、circuitmanipulations從真值表或后面將要講述的方法所得到的組合電路均是“與—或”、“或—與”結(jié)構(gòu)。從CMOS電路的實現(xiàn)上來說,帶“非”的門的速度要快些,因而在具體實現(xiàn)時,往往需要將所得的電路作一些電路的等效變換,成為能用帶“非”的門實現(xiàn)。32數(shù)字邏輯設(shè)計及應(yīng)用3、combinational-circuitminimizationMinimizingbyswitchingalgebraMinimizingbykarnaughmapMinimizationmethods:Minimizingthenumberoffirst-levelgatesMinimizingthenumberofinputsoneachfirst-levelgatesMinimizingthenumberofinputsonthesecond-levelgatesBasingon:T10、T10’X·Y+X·Y’=X;(X+Y)·(X+Y’)=X33數(shù)字邏輯設(shè)計及應(yīng)用4、KarnaughMap

graphicalrepresentationofalogicfunction’struthtable.①stucturen-variablek-maphas2ncells.1-vark-map2-vark-map

F(X,Y)FX0101FX0101Y0123eachcellhasanumberwhichcorrespondtoamintermnumberinatruthtable.34數(shù)字邏輯設(shè)計及應(yīng)用3-vark-map

F(X,Y,Z)4-vark-map

F(W,X,Y,Z)FXY000101Z012311106745ZXYFWX000101YZ45111012138932671514111000011110WYXZXYisarrangedinGraycode.thecontentsisoutputvaluecorrespondingtoeachinputcombination35數(shù)字邏輯設(shè)計及應(yīng)用②fillinthek-mapforagiventruthtable編號相同的真值表的每一行與卡諾圖的方格是一一對應(yīng)的。將真值表各行的輸出值填入卡諾圖的對應(yīng)方格中。Exp:F=∑X,Y,Z(1,2,5,7)truthtablek-map?XYZF00000011010101101000101111001111FXYZ

1

1

0

1

0

0

1

000011110XY01Z36數(shù)字邏輯設(shè)計及應(yīng)用③fillinthek-mapforalogicexpression一般步驟:先將所求積之和式變換為標準和式,每個最小項代表了真值表中令輸出為1的輸入組合,按照最小項編號依次將對應(yīng)的卡諾圖方格中填1。Exp:F=A’·B’·C’·D+A’·B·D’+A·C·D+A·B’,representitbyk-map.solution:F=?=∑ABCD(?)37數(shù)字邏輯設(shè)計及應(yīng)用00011110F1001101010101100ABCD000111ACDB1038數(shù)字邏輯設(shè)計及應(yīng)用5、minimizingsumsofproductsbaseon:T10、T10’

X·Y+X·Y’=X(X+Y)·(X+Y’)=X

combinetwoadjacent“1”cellintoaproducttermandeliminateoneliteral.(1)adjacent

inputcombinationsofadjacentcellonlydifferinonevariable,thatisalsocalledwrapround.39數(shù)字邏輯設(shè)計及應(yīng)用FXY0001Z011110ZXYFWX0001YZ111000011110WYXZadjacentadjacentadjacentadjacent40數(shù)字邏輯設(shè)計及應(yīng)用(2)methodsofminimizationcircle2iadjacent“1”cells,itwillbeanewproducttermwith(n-i)literals.thecirclemustbepromisedthebiggestone,ifenlargethecircle,then“0”cellmaybeincluded。thecombinedproducttermiscalledprimeimplicant,PI)。1001101000011110F10101100WXYZ000111WYZ10X41數(shù)字邏輯設(shè)計及應(yīng)用deriveprimeimplicantinareascoveredbythecirclewhere①avariableis0,thenitiscomplementedintheproductterm.②avariableis1,thenitisuncomplementedintheproductterm.③avariableis0aswellasareawhereitis1,thenitisn’tappear.42數(shù)字邏輯設(shè)計及應(yīng)用Exp1001101000011110F10101100WXYZ000111WYZ10XW·X’X’·Y’·ZW’·X·Z’W·Y·Z43數(shù)字邏輯設(shè)計及應(yīng)用completesum—sumofallprimeimplicants.

F=X’Y’Z+W’XZ’+WYZ+WX’needtofindtheminimalsumfindthedistinguished“1”cellmakesuretheEssentialPrimeImplicant,EPI)minimalsumisthesumofEPI.44數(shù)字邏輯設(shè)計及應(yīng)用1001101000011110F10101100WXYZ000111WYZ10Xdistinguished“1”cell45數(shù)字邏輯設(shè)計及應(yīng)用

Exp1:111101100110000000011110FWXYZ000111WYZXcompletesum:F=Y’Z+XZ’+XY’minimalsum:F=Y’Z+XZ’46數(shù)字邏輯設(shè)計及應(yīng)用Exp2:derivetheminimalsumbyk-map.F=AC’+A’C+B’C+BC’FABC

1

0

1

1

1

1

1

000011110AB01Crules:按照表達式中出現(xiàn)的變量確定變量的個數(shù),畫好方格圖;再按照每個積項確定方格圖中的主蘊含項;確定主蘊含項時,由積項中出現(xiàn)的變量因子對應(yīng)于圖中的區(qū)域的交叉部分填入“1”即可。47數(shù)字邏輯設(shè)計及應(yīng)用CombinationalcircuitdesignexampleExp1:4-bitprime-numberdetector.F=∑N3N2N1N0(1,2,3,5,7,11,13)1FN3N200011N1N011110111100011110N3N1N2N0minimalsum:F=N3’·N0+N2·N1’·N0+N2’·N1·N0+N3’·N2’·N148數(shù)字邏輯設(shè)計及應(yīng)用CombinationalcircuitdesignexampleExp.2:designa3-bitGraycode–binarycodedecoder.LetGraycode:G2G1G0Binarycode:B2B1B0G2G1G0B2B1B000000000100101101001001111010011110110111010011149數(shù)字邏輯設(shè)計及應(yīng)用CombinationalcircuitdesignexampleExp3:designa3-bitmajority-rulecircuit,thattheoutputvalueissameasthemostofinputbits.ABCF0000001001000111100010111101111100100111FABCCAB50數(shù)字邏輯設(shè)計及應(yīng)用CombinationalcircuitdesignexampleExp.4:aprioritycircuitcanjudgewhetherthenumberofinput“1”bitsisoddornot,trytodesignsucha4-bitodd-prioritycircuit.Exp.5:finishthefollowingoperationbyusingk-map.KnownF1=BC’+C’D’+B’CDandF2=AD’+CD+A’B’C’,doFA=F1·F2,F(xiàn)B=F1+F2。51數(shù)字邏輯設(shè)計及應(yīng)用(3)k-mapmorethan4-variable5-variable,32cells,letvariablesareV、W、X、Y、Z041282428201615139252921173715112731231926141026302218FVWXYZ00000101101011011110110000011110ZYVWXNumberofcellArrangeInGraycode52數(shù)字邏輯設(shè)計及應(yīng)用DividingintotwopartAdjacent:eachcellisadjacentto5cells.913518124000011110F1101462111573WXYZ000111WYZX10V=0252921172428201600011110F22630221827312319WXYZ000111WYZX10V=153數(shù)字邏輯設(shè)計及應(yīng)用例:寫出下列邏輯函數(shù)的最小積之和,F(xiàn)=∑VWXYZ(7,8,9,10,11,12,23,24,26,28)111111WXYZWYZXV=01111WXYZWYZXV=154數(shù)字邏輯設(shè)計及應(yīng)用6、minimizing“product-of-sums”Combiningadjacent2i“0”cell,getanewsumtermwith(n-i)literals.orderivetheminimalsumF’∑oftheinversefunctionfirst;thencomplementtheF’∑,sotheminimalproductF∏couldbederived.Exp.00011110F1111011000101110WXYZ000111WYZX10F’=WYZ’+W’YX’+X’Z’F=(W’+Y’+Z)·(W+X+Y’)·(X+Z)55數(shù)字邏輯設(shè)計及應(yīng)用7、“don’t-care”inputcombinationsTheoutputdoesn’tmatterforcertaininputcombination(maybeneveroccur).Thesearecalleddon’tcareterms.Usesymbol“d”、“×”、“Φ”

torepresenttheoutputvalue.Inminimization,don’tcaretermcouldbeusedas“1”or“0”ifnecessary.56數(shù)字邏輯設(shè)計及應(yīng)用Exp.100011110F1d110d0000d11000ABCD000111ACDB10F=C’·D+A·B’·D+A’·C·D57數(shù)字邏輯設(shè)計及應(yīng)用Exp.2:aBCDprime-numberdetector.0000~1001:validinputBCD;1010~1111:invalidinput,sooutputdon’tcare。BCD

prime-numberdetectorBCDinputResultYes:F=1No:F=0FN3N2N1N0N3N1N2N011dd111ddddF=N3’·N0+N2’·N1458數(shù)字邏輯設(shè)計及應(yīng)用Exp.3:minimizingthefollowingexpressiontominimalsumand“NAND-NAND”representation.

F=A’B’C’+A’BD’+A’CD+ABCAB’+AC’=0(約束項)約束無關(guān)項—輸入變量的取值組合受到約束,這些輸入組合對應(yīng)的輸出也是任意的。59數(shù)字邏輯設(shè)計及應(yīng)用dd1dd11Fd11d111ABCDACDBAC’AB’don’tcaretermdd1dd11Fd11d111ABCDACDBthek-mapminimization60數(shù)字邏輯設(shè)計及應(yīng)用8、multiple-outputminimizationusingcommontermsenough.Exp:F=∑XYZ(3,6,7),G=∑XYZ(0,1,3),derivethecircuit.:(1)synthesisindividuallyFXYZ

0

1

1

0

0

1

0

000011110XY01ZGXYZ

00

1

1

0

0

0

100011110XY01ZF=X·Y+Y·ZG=X’·Y’+X’·Z61數(shù)字邏輯設(shè)計及應(yīng)用(2)Findthecommonterms,thesynthesisagainAlgorithm①findthem-productfunctionofalloutput.②circlethem-product’sEPI.(thecommonpart)③findtheEPIintheleaving“1”cell.④combiningstep②、③,getthefinalcircuit.F·GXYZ001

0000

000011110XY01ZX’·Y·Z62數(shù)字邏輯設(shè)計及應(yīng)用FXYZ0110010000011110XY01ZGXYZ0011000100011110XY01ZF·GXYZ

00

1

0

0

0

0

000011110XY01ZX’·Y·ZF=X·Y+X’·Y·ZG=X’·Y’+X’·Y·Z重新劃出質(zhì)主蘊含項63數(shù)字邏輯設(shè)計及應(yīng)用列表法主蘊含項最小項01367F{3,7}√√{6,7}√√G{0,1}√√{1,3}√√64數(shù)字邏輯設(shè)計及應(yīng)用4.5TimingHazardsAStaticHazardisdefinedwhenasinglevariablechangeattheinputcausesamomentarychangeinanothervariable[theoutput].ADynamicHazardoccurswhenachangeintheinputcausesmultiplechangesintheoutput.keywords:glitch、hazardreason:delayStaticHazard:static-1,static-0hazards65數(shù)字邏輯設(shè)計及應(yīng)用1、statichazards①static—1hazardsdefinition:apairofinputcombination(a)differinonlyonevariable(b)bothoutput1

whentheinputchange,amomentary0outputmaybeoccurred.Exp:F=X·Z’+Y·Z,assumeeachgatehasthesamepropagationdelay.66數(shù)字邏輯設(shè)計及應(yīng)用whenX·Y·Z=111→110FXYZ01101

1

0

000011110XY01ZXYZZ’X·Z’Y·ZF10010

glitchF=X·Z’+Y·ZSta

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論