




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
FutureResearchAvenuesforArtificialIntelligenceinDigitalGaming:AnExploratoryReport
MarkusDablander*
arXiv:2412.14085v1[cs.LG]18Dec2024
CommissionedbyBeamFoundationtasIndependentContractArtificialIntelligenceResearcher
beam\
Abstract
Videogamesareanaturalandsynergisticapplicationdomainforartificialintelli-gence(AI)systems,offeringboththepotentialtoenhanceplayerexperienceandimmersion,aswellasprovidingvaluablebenchmarksandvirtualenvironmentstoadvanceAItechnologiesingeneral.Thisreportpresentsahigh-leveloverviewoffivepromisingresearchpathwaysforapplyingstate-of-the-artAImethods,partic-ularlydeeplearning,todigitalgamingwithinthecontextofthecurrentresearchlandscape.Theobjectiveofthisworkistooutlineacurated,non-exhaustivelistofencouragingresearchdirectionsattheintersectionofAIandvideogamesthatmayservetoinspiremorerigorousandcomprehensiveresearcheffortsinthefuture.Wediscuss(i)investigatinglargelanguagemodelsascoreenginesforgameagentmodelling,(ii)usingneuralcellularautomataforproceduralgamecontentgeneration,(iii)acceleratingcomputationallyexpensivein-gamesimulationsviadeepsurrogatemodelling,(iv)leveragingself-supervisedlearningtoobtainusefulvideogamestateembeddings,and(v)traininggenerativemodelsofinteractiveworldsusingunlabelledvideodata.Wealsobrieflyaddresscurrenttechnicalchallengesassociatedwiththeintegrationofadvanceddeeplearningsystemsintovideogamedevelopment,andindicatekeyareaswherefurtherprogressislikelytobebeneficial.
*
仁GoogleScholar
|
囹LinkedIn
|
曰GitHub
t谷Homepage
|
X
2
1Introduction
Inthelastdecade,theriseofadvancedneuralnetworkarchitectureshasledtoaseriesofdramatic
breakthroughsinthefieldsofmachinelearningandartificialintelligence(AI).TheGPU-acceleratedtrainingoflarge,carefullydesigneddeeplearningmodelshasenabledresearcherstotacklepreviouslyintractablechallengesindiverseareassuchascomputervision[
1,
2,
3,
4,
5
],naturallanguageprocessing[
6,
7,
8,
9
],artificialcontentgeneration[
10,
11,
12,
13
],andcomputationalchemistry[
14,
15,
16,
17,
18]
.Oneexceptionallypromisingandnaturalapplicationareaformoderndeeplearning,whichwillbeexploredinthisreport,isdigitalgaming.
ThefocusofAIresearchongamesalreadyhasalongandimportanthistory.Inparticular,thestudyofclassicalboardgamessuchasChess,Checkers,andGohasbeenformativeandinstrumentalfortheAIfieldasawhole[
19,
20]
.Thehighlystructurednatureofmanygamesallowsfortheemergenceofgreatcomplexityandstrategicdepthfromsimplerulesthatcaneasilybeexpressedinacomputationalframework;consequently,gameshavelongbeenconsideredidealtestinggroundsforthereasoningandplanningcapabilitiesofAIagents.Asignificantmilestonewasreachedin2016,whenthefirstAIsystemachievedsuperhumanperformanceinthegameofGo[
21
],which,atthattime,representedthelastmajor,popularboardgameinwhichhumanexpertsstilloutperformedcomputers.
Particularlysincethen,digitalgameshaveincreasinglybeenrecognisedasoneofthenextgreatfrontiersofAIresearch.Inrecentyears,considerableprogresshasbeenmadetowardsdevelopingAIagentscapableofmasteringreal-timestrategyvideogames,suchasStarCraftII[
22
],andmultiplayeronlinebattlearenavideogames,suchasDota2[
23
],bothofwhichposeafargreaterchallengetoAIsystemsthanclassicalboardgames.Simultaneously,theconstructionofgeneralAImodelsthatcanlearntoplaymultiple,qualitativelydistinctarcadevideogameshasemergedasanactivefieldofresearch[
24,
25,
26
],andworkinthisareamayserveasasteppingstonetowardsthedevelopmentofmoregeneralAIsystemsinotherdomains.
Importantly,itisnotmerelythecasethatvideogameshavethepotentialtoenrichcontemporaryAIresearch;theconverseistrueaswell.TherelationshipbetweenAIresearchanddigitalgamingismutualandsynergistic[
19,
20,
27
],withvideogamesprovidingvaluablebenchmarks,test-bedsandvirtualenvironmentsfornovelAIsystems,whilenovelAIsystems,inturn,provideawealthofopportunitiesforvideogamedeveloperstoenhancetheircreativeproducts.PartlyduetotherapidprogressofrecentAItechnologies,inparticulardeeplearning,manyoftheseopportunitiesarestillunderutilisedandhaveyettobeexplored.
Thisreportaimstogiveaconcise,preliminaryoverviewofaselectionoffivepotentialresearchavenuesfortheapplicationofstate-of-the-artAItechniquestodigitalgaming.WhileouremphasiswillmainlybeonresearchdirectionswherecontemporaryAImethodscanenhancedigitalgaming,thereciprocalconnectionbetweenAIandvideogamesmakesitconceivablethatinvestigatingthesetopicscouldalsodrivenewinsightsandadvancementsinAIitself.Theobjectiveofthisexploratoryreportisnottoprovideacomprehensivesetofmatureresearchproposals,ortopresentnoveloriginalresearchfindings.Instead,thefocusisonofferingaspeculativecollectionofhigh-levelideasthatmayservetoinspiremorerigorousandfocusedresearcheffortsinthefuture.Theselectedareasarenotinanywayexhaustive,butratherrepresentacuratedandnecessarilysubjectivecollectionofideasdeemedparticularlyintriguingduringourexaminationofthecurrentresearchlandscape.
ThefoundationalbookfromYannakakisandTogelius
[20
],whichservedasoneofthemostvaluablereferencesforthiswork,outlinesthreecoreapplicationsofAItovideogaming:
?AIforgameplayingandagentmodelling,whichincludessimulatingtheroleofahumanplayer[
22,
23
],orcontrollingothergameagentsinthebroadestsense,suchasnon-playercharacters(NPC)[
28,
29
],orhiddenagentsgoverningaspectsofthegameenvironment[
30]
.
?AIforproceduralcontentgeneration
[31
],whichincludesthealgorithmiccreationofgamelevels,music,textures,art,dialogues,items,characters,oranyotherdigitalcontent.
?AIforplayermodelling
[32
],whichincludesthemodellingofhumanplayercharacteristics,suchasplayertype,predictedin-gamebehaviour,oremotionalstate,basedonmeasuredgameplayandplayerdata.
Allofthesethreeareasarereflectedintheresearchavenuesdiscussedbelow,withagreateremphasis
onthefirsttwo.
3
2LargeLanguageModelsforGameAgentModelling
Largelanguagemodels(LLMs)suchasOpenAI’sGPT-4[
33
],Google’sLlama3[
34
],andAn-thropic’sClaude3[
35
]haverecentlyrisentoenormousprominenceduetotheiradvancedcapa-bilitiestomaintainrealisticconversationalarcsandgenerateflexiblesolutionstoawiderangeoflanguage-relatedtasks.Currentstate-of-the-artLLMsarebasedalmostexclusivelyonvariantsofthetransformerarchitecture,introducedintheseminalworkofVaswanietal.
[7]
in2017.Transformernetworksrelyontheconceptofself-attention,adeeplearningmechanismdesignedtoeffectivelycapturelong-rangedependenciesandcontextualinformationinsequentialdata.ThecoretrainingprocessformanyLLMsisself-supervisedandautoregressive,meaningthattheLLMistrainedtogeneratetextbyprobabilisticallypredictingthenextword(orsubwordtoken)inatextbasedontheprecedingwords.LLMsregularlycontainbillionsoftrainableparametersandarefrequentlytrainedonvastcorporaofunlabelledtextualdatacollectedfrompubliclyavailablesourcessuchasbooksandwebsites[
36]
.
Atthemoment,LLMsareattractingsignificantattentionwithinthevideogameAIresearchcommu-nityfortheirpotentialapplicabilitytoadiversearrayofgaming-relatedtasks[
37,
38]
.Forexample,LLMshaverecentlybeenexploredforthealgorithmiccreationofnewvideogamelevelsinSuperMarioBros
[39
],theautonomousplayingofMinecraftthroughthegenerationofcodeforasuitablegameAPI[
40
],thesystematicextractionofplayersentimentfromwrittengamereviews[
41
],andtheautomaticgenerationofdynamicaudiocommentaryforLeagueofLegendsgameplay[
42]
.CoveringallpromisingusecasesofLLMsindigitalgamingwouldbebeyondthescopeofthisexploratoryreport.However,webrieflyhighlightonepossibleresearchdirectionweconsidertobeparticularlyinteresting,namelytheuseofLLMsforgameagentmodelling.
GameagentmodellingincludesthedevelopmentandcontrolofNPCssuchasteammates,enemies,sidekickcompanions,merchants,bystanders,andothervirtualcharactersinthebroadestsense.PerhapsoneofthemostevidentandfruitfulapplicationsofLLMsinthiscontextwouldbetoequipNPCagentswiththeabilitytohavenaturalandunscriptedconversationswitheachotherandwithhumanplayers.Firstinvestigationsinthisareahavealreadybegun[
43,
44,
45
];furtheradvancementsinintegratingLLMsasNPCdialoguesystemsmaybeabletomarkedlyenhancetherealismofvirtualcharacters,leadingtosubstantiallydeeperandmoreimmersivevideogameexperiences.
However,theoverallpotentialofLLMsforagentmodellingmayexceedthealreadyappealingareaofdynamicdialoguegeneration.In2024,Huetal.
[46]
gaveaconceptualdescriptionofanentirecognitivearchitectureforgeneralgameagentsthatembedsanLLMasthecorethinkingcomponentwithinanetworkofothersubmodulescoveringperception,memory,role-playing,action,andlearning.DrawingcloselyfromtheworkofHuetal.,onemightenvisionanLLM-basedcognitivearchitecturebroadlyworkingasfollows:theperceptionmoduletranslatescurrentgamestatesintotextualdescriptions;thethinkingmodule,poweredbyanLLM,receivesoutputsfromtheperceptionmoduleandrelevanttext-basedmemoriesretrievedfromthememorymoduletooutputtextualactionplans;theseplansaretranslatedbytheactionmoduleintoexecutablelow-levelin-gameactions;theLLM-basedthinkingprocessisadditionallybiasedwithcharacterinformationbytherole-playingmodule;andcontinuouslyupdatedwithtechniquessuchasreinforcementlearningorsupervisedfinetuningbythelearningmodule.Onemayalsoconsiderintroducingaseparategoalmodulethatmanagestheobjectivesoftheagentinatext-basedmannerandinteractswiththeothermodules.
Whileeachoftheabovemodulescouldeasilywarrantitsownextensiveresearchprogramme,firstsuccessfulattemptstodesigngameagentsviatheintegrationofLLMsintobroadercognitivearchitectureshavealreadybeenmade.Mostnotably,Parketal.
[44]
createdaninteractiveartificialsocietyconsistingofavirtual2Dvillagewith25distinctLLM-basedgameagentswithdifferentpersonalitiesandprofessions.Eachagentmaintainsatext-basedmemorystreamthatcontainsacomprehensivelistoftheagent’sperceptions,alongwithgeneratedactionplansandsynthesisedhigher-orderreflections.AnLLMinteractswiththeagent’smemorystreamandcurrentperceptionstogeneratenewreflectionsandadaptactionplans.Thisapproachleadstoanimpressivelycomplexandconvincingsetofself-organisingemergentsocialbehaviours:agentsleadnaturaldialogues,coordinateactions,spreadinformation,anddynamicallyupdatesocialrelationshipmemories.Asimple,schematicoverviewofanLLM-basedcognitivearchitecture,heavilyinspiredbytheworksofParketal.
[44
]andHuetal.
[46
],isdepictedinFigure
1.
Furtherefforts,suchasthosebyParketal.,tointegrateLLMsintoabroadernetworkofcognitivemodulescouldnotonlycontributetothedevelopmentofmoreimmersivevideogamecharactersand
4
text
gameenvironmentfeatures
perceptionmodule
gamestate
executableactionsequences
actionmod
ule
thinkingmodule
(LLM)
text
text
memorymodule
text
Figure1:Simple,high-leveloverviewofaconceivableLLM-basedcognitivearchitectureforavideogameagent,stronglyinfluencedbytheworksofParketal.
[44]
andHuetal.
[46]
.Theperceptionmoduletranslatesgameenvironmentfeatures(pixels,statisticalfeatures,vectorialembeddings,etc.)extractedfromthegamestateintotextualdescriptions.Thememorymodulestorespasttextualperceptions,aswellasothermemoryitemsthatareeitherpredetermined(fixedcharacterinformation,basicgoals,etc.)orgeneratedbythethinkingmodule(novelknowledge,reflections,goals,proceduralskills,etc.).Thethinkingmodule,basedonalargelanguagemodel(LLM),processescurrenttextualperceptionsandrelevanttextualmemoryitemsretrievedfromthememorymodule,andoutputstextualactionplansandnewmemoryitems.Thetextualactionplansareconvertedbytheactionmoduleintolow-levelsequencesofin-gamebehavioursthatareexecutedtochangethegamestate.
morehuman-likevirtualagentsforplaytesting,butalsoadvanceresearchonthedisputedquestionofhowsuitableLLMstrulyareascoreenginesforartificialgeneralintelligence[
47,
48]
.
3NeuralCellularAutomataforProceduralContentGeneration
Cellularautomata(CA)[
49,
50
]areafamilyofextensivelyinvestigatedanddiversemathematicalmodelsrepresentedbygridsofcells,whosestatesevolveindiscretetime.Ateachtimepointt,eachcellhasastaterepresentedbyanumber(oravectorofnumbers),anditsstateattimet+1isdeterminedbyitsownstateandthestatesofitsneighboringcellsattimet,accordingtoalocaltransitionfunctionthatdefineshowthestatesevolve.
AsimpleandiconicexampleofCAthatmanyreadersmaybefamiliarwithisgivenbyConway’sGameofLife
[51
],whichtakesplaceonaninfinite2Dorthogonalgridofsquarecells,eachofwhichcanonlybeinoneoftwopossiblestates,deadoralive.Givensomeinitialconfiguration,cellstatesstarttoevolvebasedonasimpletransitionfunctionthatonlytakesintoaccounthowmanydeadoraliveneighboursacellhasatagiventime.Inspiteofitsextremesimplicity,Conway’sGameofLifeexhibitsanimpressivesetofcomplexself-organisingbehaviours
.1
CAhavealreadybeenusedinvideogameswithconsiderablesuccess,forinstancetogrowinfinitecavelevelsforthegameCaveCrawler
[52
],automaticallygenerateplayablemazesformazerunninggames[
53
],modelgranularmedialikesandorsoil[
54
],orsimulateerosioninvirtualenvironments[
55]
.CAarehighlycomputationallyefficientmodelsthatcanbeusedtogenerateintricatevirtualcontent.Atthesametime,CAareconceptuallysimple,intuitivetounderstandandeasytoimplement.However,theconstructive,emergentnatureofCAalsomakesthemdifficulttocontrol[
20]
.Ingeneral,givenalocaltransitionfunction,itisverydifficulttopredictwhichpatternwillariseovertimefromaspecificinitialgridstate;evenextremelysimilarinitialstatesmayquicklydivergeinachaoticmanner,leadingtoentirelydifferentoutcomes[
56]
.Similarly,identifyingalocaltransitionfunctionthatovertimemapsagiveninitialstatetoadesiredpatternisanontrivialtechnicalproblem.ThesepropertieslimittheutilityofCAasproceduralcontentgeneratorsforvideogamesbymakingitchallengingtoimposeessentialconstraintsongeneratedcontent.Suchconstraintsmay
1VideoillustrationofConway’sGameofLife
5
targetpattern
lst
glecell
si
te
binitiaa
ork)
lcaltransitinfnctingrdienttrainableneurlnetw
Figure2:Conceptualdiagramofhowaneuralcellularautomaton(NCA),oncetrained,coulditerativelygeneratethetargetimageofatree(imagenotgeneratedbyactualNCA,usedforillustrativepurposesonly).AnNCAisacellularautomatonwhoselocaltransitionfunctionisparametrisedbyaneuralnetwork.Mordvintsevetal.
[59]
showedhowanNCAcanbetrainedwithgradient-basedmethodstoorganicallygrowanarbitrary,predefinedtargetpatternfromasingleinitialcell.TheNCAcanalsolearntoautomaticallyconvergebacktoitsintendedtargetpatternwhendisturbedinamannerthatresemblesself-regeneration.
includeguaranteedsolvabilityforagamelevel,oraparticularshape,connectivityandaestheticstyleforagameobject.
Recently,neuralcellularautomata(NCA)
[57,
58
]havebeenincreasinglyinvestigatedasasignifi-cantwaytoaddresssomeoftheseshortcomingsandallowforsubstantiallygreatercontroloverthedynamicalprocessesgoverningCA.AnNCAisaCAwhoselocaltransitionfunctionisparametrisedbyatrainableneuralnetwork.OneofthekeycontributionsinthefieldofNCAwasmadebyMordv-intsevetal.
[59]
in2020,whodemonstratedhowanNCAparametrisedbyaconvolutionalneuralnetworkcanbeeffectivelytrainedinadifferentiableend-to-endmannerviagradient-basedmethodstoiterativelygenerateanypredefinedtargetimagefromasinglecell(seeFigure
2
foranillustrationofthisidea).TheymoreovershowedhowNCAcanbetrainedtoexhibitself-regeneration,or,inthelanguageofdynamicalsystemstheory,howthetargetimagecanbeturnedintoanattractor.Aself-regeneratingNCAautomaticallyconvergesbacktoitsintendedtargetpatternwhenperturbed
.2
TheseminalworkofMordvintsevetal.
[59]
hasimplicationsstretchingintodiverseareas,includ-ingmorphogenesis,embryonicdevelopment,regenerativemedicine,self-organisation,andswarmrobotics.Inaddition,firstattemptshavealreadybeenmadetoapplyNCAinvideogamere-search[
60,
61,
62,
63,
64,
65
]:Earleetal.
[60]
successfullytrainedNCAtogeneratelevelsfor2Dtile-basedgameswhiletakingintoaccountvalidityanddiversityconstraints;Sudhakaranetal.
[63]
usedNCAinthevirtualworldofMinecraftforthetargetedmorphogeneticgrowthofcomplex3Dobjectssuchascastlesandtrees;andPajouheshgaretal.
[64]
employedNCAforthevirtualsynthesisofdesiredtextureson3Dmeshes.
TheseearlystudieshighlightthepotentialofNCAasanoveldeep-learning-basedtoolforproceduralcontentgenerationinvirtualenvironments[
66]
.However,manypromisingresearchdirectionsremaintobeinvestigated.AdditionalworkcouldfurtherexplorethecapabilitiesofNCAtobetrainedviacustomlossfunctionsdesignedtopromotespecificdesignconstraintsforvideogamecontentgeneration.FuturestudiescouldalsomoredeeplyinvestigateNCAforthecreationofrealistictexturesfordigitalobjectsinacomputationallyefficientmanner,orforaccuratelysimulatingorganicandregenerativeprocesses,suchasthegrowthofnaturalecosystems,agingcharacters,materialdegradation,orwoundhealing.Beyondcontentgeneration,itmayalsobeinterestingtoinvestigate
NCAasefficientlytrainableswarmintelligencemodelstoinduceemergentbehavioursingroupsof
locallyconnectedNPCs.
2Interactiveanimationsofself-regeneratingNCAbyMordvintsevetal.[]
59
6
4DeepSurrogateModellingtoAccelerateComputationallyExpensive
In-GameSimulations
useftosimulatedataset
Rn
Intheirseminalstudy,Gilmeretal.
[14
]notonlyintroducedmessage-passingasaunifyingframeworkforgraphneuralnetworkarchitectures;inadditiontothissalientcontribution,theyalsoshowedthatagraphneuralnetworkcanlearntoefficientlypredictquantum-chemicalpropertiesofsmallmoleculesusingtheQM9dataset[
67
]fortraining.TheQM9datasetconsistsofaround134kchemicalcompounds;eachcompoundcomeswithasetofnumericallabelsthatrepresentapproximationsofrelevantquantum-chemicalproperties.Foreachcompound,eachnumericallabelistheresultofaquantum-mechanicalsimulationbasedonwhatisknownasdensityfunctionaltheory
[68]
.Densityfunctionaltheorysimulations,whilehighlyusefulforelucidatingtheelectronicstructureofamolecule,areassociatedwithprohibitivecomputationalcosts;forexample,generatingallthelabelsintheQM9datasetforasinglemoleculewithnineheavyatomsonasinglecoreofaXeonE5-2660processorwith2.2GHzandcommonlyusedsoftwaremaytakearoundonehour[
14]
.Incontrast,thegraphneuralnetworkfromGilmeretal.,whichwastrainedontheQM9datasetinasupervisedmanner,canestimatetheoutcomeofdensityfunctionaltheorysimulationsforanovelmoleculeinafractionofasecond.Thiscorrespondstoaspeed-upoffiveordersofmagnitude,makingitcomputationallyfeasibletorapidlypredictquantum-chemicalpropertiesforlargemolecularlibraries.
comnputationallycostlyf(slowtoevaluate
unctionf
)
deepnetwork(fasttoevalulate)
training
usetotraino
a{(r1,f(acr1)),…,(arm,f(arm))}SXRn
Figure3:Illustrationoftheelementaryideabehinddeepsurrogatemodelling:AcomputationallyexpensivefunctionfisrepeatedlyevaluatedtogenerateatrainingdatasetD,whichisthenusedtotrainadeepnetworkΦθ.Aftertraining,Φθactsasacomputationallyfastapproximationoff.
TheworkofGilmeretal.representsaprimeexampleofwhatcanbereferredtoasdeepsurrogatemodelling
[69,
70,
71,
72]
.Ahigh-levelillustrationofthekeyideabehinddeepsurrogatemodellingisgiveninFigure
3.
Inoneofitsmostelementaryforms,deepsurrogatemodellingisatechniqueusedtospeeduptheevaluationofacomputationallyexpensivefunction
f:X→Rn
thatisofinterestforapracticalapplication.Forinstance,fcouldrepresentanexpensivenumericalcomputersimulation.InourearlierexamplefromGilmeretal.,thedomainXwouldbeasetofmoleculargraphs,andfwouldrepresentadensityfunctionaltheorysimulationthatmapsmoleculargraphstonumericalquantum-chemicalpropertiesexpressedasvectorsinRn.Initially,a(sometimesconsiderable)computationaleffortismadetocreateadataset
D={(x1,f(x1)),...,(xm,f(xm))}?X×Rn,
whichisthenusedtotraintheparametersθofasuitabledeeplearningarchitectureΦθ:X→Rn
7
inasupervisedmanner.Aftertraining,thedeepnetworkΦθcanbeusedasasurrogateforf,approximatingthevalueoff(兒)withΦθ(兒)fornovel兒outsidethetrainingsetD.Furthermore,Φθcanalsobeoptimisedinsteadoffwhenlookingformaximisersorminimisersoff.WhileΦθmaybelessaccuratethantheoriginalsimulationfunctionf,itcanbeordersofmagnitudefastertoevaluate.
Deepsurrogatemodellingisparticularlyusefulinsituationsrequiringcomputationallyexpensiveandrepetitivesimulations[
70]
.Videogamesregularlyinvolveaplethoraofsuchsimulations,spanningdiverseareaslikegameplaybalancing,difficultytuning,fluidandparticledynamics,Newtonianmechanics,pathfinding,environmentalsystems,realisticlighting,soundpropagation,gamestateprediction,andproceduralcontentgeneration.Assuch,digitalgamingmaybewell-suitedfortheapplicationofdeepsurrogatemodelstoaccelerategameplay,reduceloadingtimesandoptimisethegamedevelopmentprocess.Despitetheseencouragingpossibilities,thenumberofstudiesexploringdeepsurrogatemodelsforvideogamesappearstoberelativelylimited[
73,
74,
75,
76,
77,
78,
79]
.However,earlyworkinthisfieldhasalreadyshownsomesuccess.Forexample,Bhattetal.
[74]
trainedadeepsurrogatemodelonsimulateddatatopredictthebehaviourofagameagentinnovelenvironments,applyingthemodeltoacceleratethealgorithmicgenerationofnewenvironmentsthatleadtodiverseagentbehaviours.Overall,theutilityofdeepsurrogatemodellingfordigitalgamingmaystillbeunderexplored,offeringnotableopportunitiesforfutureresearch.
5Self-SupervisedVideoGameStateRepresentationLearning
BeingabletorepresenttheabstractstateofavideogameintermsofameaningfulnumericalvectorisakeyelementinalargevarietyofmodernAIapplicationsfordigitalgaming[
20]
.Inthiscontext,ahigh-qualityvectorialrepresentationtechniqueshouldbeabletocondensetheessentialfeaturesofavideogamestateintoaninformativeembeddingthatcanbeeffectivelyusedfordownstreamAItasks.Suchtasksmay,forexample,includeusingagamestateembeddingasamodelofperceptionforanautonomousgameagent[
26,
80
],predictingtheemotionalstateofaplayerfromgameplayvideostreams[
81
],predictingfuturegamestatesfromcurrentones[
82
],dynamicallyadaptinggamemusicdependingonthestateofagame[
83
],oralgorithmicallytranslatinggamestatesintonaturallanguagedescriptions[
44]
.
Apowerfuldeeplearningparadigmforvectorialdatarepresentationthathasemergedinrecentyearsisself-supervisedlearning
[84
],whichoffersacollectionofstrategiestolearnrich,general-purposeembeddingssolelyfromtheinternalstructureofunlabelledinputdata.Whilesuperviseddeeplearningisbasedontheextractionoftask-specificfeaturesfromlabelleddatasets,self-supervisedlearningdoesnotrelyondataannotationbyhumansubjects,andinsteadallowsonetofindflexiblefeaturerepresentationsinatask-agnosticmanner.Labelleddataisfrequentlyscarceandhardtoobtain;self-supervisedlearningmethodsdonotsufferfromcomparablelimits,astheycantakeadvantageofvastcorporaofunlabelleddatasets,suchascuratedlibrariesofimagesandtextextractedfromtheinternet.Representationslearnedviaself-supervisedtrainingcanbeemployedinavarietyofways,includingclustering[
85
]andanomalydetection[
86]
.Importantly,theycanalsobefine-tunedondownstreamsupervisedtasks[
87
],anapproachthatregularlyleadstosubstantialboostsinperformancecomparedtopurelysupervisedtechniques.
Whileself-supervisedlearninghasbecomeasignificantareaofresearchindomainslikenaturallanguageprocessingandcomputervision[
88
],comparableworkindigitalgamingisstillrelativelysparse.Aliteraturesearchforstudiesthatuseconceptsfromself-supervisedlearningindigitalgamingrevealedonly12instances[
80,
89,
90,
91,
92,
93,
94,
95,
96,
97,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保設(shè)施運(yùn)維合同樣本
- 專項(xiàng)信托外匯固定資產(chǎn)貸款合作合同
- 玫瑰貸記卡動(dòng)產(chǎn)質(zhì)押合同協(xié)議
- 員工合同解除合同書
- 贍養(yǎng)義務(wù)履行合同范文
- 聯(lián)合購房按揭貸款合同
- 精簡(jiǎn)版商業(yè)租賃合同范本
- 租賃合同季度范本:機(jī)械設(shè)備篇
- 南湖區(qū):合同科技創(chuàng)新與合作新機(jī)遇
- 出租車股份合作合同條款
- 暑假假期安全教育(課件)-小學(xué)生主題班會(huì)
- 《脂肪肝de健康教育》課件
- 2025年外研版小學(xué)英語單詞表全集(一年級(jí)起1-12全冊(cè))
- Python爬蟲技術(shù)基礎(chǔ)介紹
- 中華民族共同體概論教案第四講-天下秩序與華夏共同體演進(jìn)
- 《傳媒法律法規(guī)》課件
- 數(shù)據(jù)中心供配電系統(tǒng)概述演示
- TSG11-2020鍋爐安全技術(shù)規(guī)程(現(xiàn)行)
- 人力資源行業(yè)人力資源管理信息系統(tǒng)實(shí)施方案
- 歌曲《wake》中英文歌詞對(duì)照
- 義務(wù)教育(音樂)課程標(biāo)準(zhǔn)(2022年版)解讀
評(píng)論
0/150
提交評(píng)論