




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁南京曉莊學(xué)院
《商業(yè)型錄設(shè)計》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識不足,導(dǎo)致標(biāo)注錯誤D.數(shù)據(jù)量過大,標(biāo)注工作耗時費力2、在計算機視覺中,以下哪種方法常用于圖像的語義分割中的多尺度特征融合?()A.特征金字塔B.空洞卷積C.注意力機制D.以上都是3、計算機視覺中的無人駕駛技術(shù)是一個綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無人駕駛中的計算機視覺的說法,不正確的是()A.計算機視覺在無人駕駛中用于環(huán)境感知、目標(biāo)檢測、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r準(zhǔn)確地識別道路標(biāo)志、車輛和行人等物體C.無人駕駛中的計算機視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對各種復(fù)雜的交通場景D.惡劣天氣條件和光照變化等因素仍然是無人駕駛中計算機視覺面臨的挑戰(zhàn)4、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要對一段視頻中的物體運動進(jìn)行分析,以下關(guān)于光流估計的描述,正確的是:()A.稀疏光流估計只計算圖像中部分特征點的運動,無法反映整體的運動趨勢B.稠密光流估計能夠得到圖像中每個像素的運動向量,但計算復(fù)雜度較高C.光流估計的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計只能用于分析勻速直線運動的物體,對于復(fù)雜的運動模式無法處理5、計算機視覺中的三維重建技術(shù)可以從多幅圖像中恢復(fù)物體的三維形狀。假設(shè)要對一個古老建筑進(jìn)行三維重建。以下關(guān)于三維重建方法的描述,哪一項是錯誤的?()A.可以通過立體視覺的方法,從不同角度拍攝的圖像中計算深度信息B.基于結(jié)構(gòu)光的方法能夠快速獲取物體表面的三維點云數(shù)據(jù)C.深度學(xué)習(xí)在三維重建中也有應(yīng)用,能夠?qū)W習(xí)從二維圖像到三維形狀的映射D.三維重建的結(jié)果總是非常精確,與真實物體的形狀完全一致6、在計算機視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結(jié)構(gòu)時準(zhǔn)確性更高?()A.基于模型的姿態(tài)估計B.基于深度學(xué)習(xí)的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計7、在計算機視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測中的高層語義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機制D.以上都是8、當(dāng)利用計算機視覺技術(shù)對醫(yī)學(xué)影像(如X光、CT等)進(jìn)行分析,輔助醫(yī)生進(jìn)行疾病診斷時,需要從大量的圖像數(shù)據(jù)中提取有價值的特征。以下哪種特征提取方法在醫(yī)學(xué)影像分析中可能具有較高的應(yīng)用價值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學(xué)習(xí)的自動特征學(xué)習(xí)D.基于顏色的特征提取9、在進(jìn)行圖像增強時,我們常常需要在保持圖像細(xì)節(jié)的同時改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波10、在計算機視覺的目標(biāo)計數(shù)任務(wù)中,統(tǒng)計圖像或視頻中目標(biāo)的數(shù)量。假設(shè)要統(tǒng)計一個果園中蘋果的數(shù)量,以下關(guān)于目標(biāo)計數(shù)方法的描述,哪一項是不正確的?()A.可以基于圖像分割和對象識別的方法,先分割出每個蘋果,然后進(jìn)行計數(shù)B.利用深度學(xué)習(xí)中的回歸模型直接預(yù)測蘋果的數(shù)量C.目標(biāo)計數(shù)不受蘋果的大小、形狀和分布的影響,任何情況下都能準(zhǔn)確計數(shù)D.結(jié)合多視角圖像或視頻序列可以提高目標(biāo)計數(shù)的準(zhǔn)確性11、當(dāng)進(jìn)行圖像的顯著性檢測時,假設(shè)要從一張復(fù)雜的圖像中突出顯示出人們視覺上最關(guān)注的區(qū)域,例如在一張風(fēng)景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準(zhǔn)確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區(qū)域與周圍的差異C.隨機選擇圖像中的部分區(qū)域作為顯著性區(qū)域D.不進(jìn)行任何計算,主觀判斷顯著性區(qū)域12、計算機視覺中的動作識別是對視頻中人物或物體的動作進(jìn)行分類和理解。假設(shè)要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風(fēng)格的變化。以下哪種動作識別方法在處理這種復(fù)雜的動作模式時表現(xiàn)更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學(xué)習(xí)的時空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動作識別13、在計算機視覺的人臉識別任務(wù)中,假設(shè)要在一個大型數(shù)據(jù)庫中快速準(zhǔn)確地識別出特定人物的面部。數(shù)據(jù)庫中的人臉圖像可能存在表情、光照和姿態(tài)的變化。為了提高人臉識別的性能,以下哪種方法是常用且有效的?()A.提取人臉的全局特征,如整體形狀和輪廓B.僅關(guān)注人臉的局部特征,如眼睛和嘴巴C.使用多模態(tài)數(shù)據(jù),結(jié)合人臉的紋理和深度信息D.隨機選擇人臉特征進(jìn)行匹配14、圖像分割是將圖像細(xì)分為不同的區(qū)域或?qū)ο?。假設(shè)我們需要對醫(yī)學(xué)圖像中的腫瘤進(jìn)行精確分割,以輔助醫(yī)生進(jìn)行診斷和治療。在這種對精度要求很高的應(yīng)用中,以下哪種圖像分割方法可能更合適?()A.基于閾值的圖像分割B.基于邊緣檢測的圖像分割C.基于區(qū)域生長的圖像分割D.基于深度學(xué)習(xí)的語義分割算法,如U-Net15、在計算機視覺中,特征提取是非常關(guān)鍵的一步。假設(shè)我們要對一組風(fēng)景圖像進(jìn)行特征提取,以便后續(xù)的圖像檢索和分類任務(wù)。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉(zhuǎn)、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經(jīng)網(wǎng)絡(luò)自動學(xué)習(xí)的特征二、簡答題(本大題共3個小題,共15分)1、(本題5分)簡述計算機視覺中目標(biāo)跟蹤的方法和挑戰(zhàn)。2、(本題5分)計算機視覺中如何進(jìn)行賽事裁判輔助?3、(本題5分)計算機視覺中如何進(jìn)行攝像機標(biāo)定?三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用目標(biāo)檢測技術(shù),從環(huán)保監(jiān)測圖像中檢測出非法排放的污水口。2、(本題5分)基于計算機視覺,設(shè)計一個車牌識別系統(tǒng),能夠準(zhǔn)確提取車牌信息。3、(本題5分)利用目標(biāo)檢測算法,在氣象圖像中檢測暴雨區(qū)域。4、(本題5分)通過圖像分類算法,對不同種類的植物葉片圖像進(jìn)行分類。5、(本題5分)運用圖像識別技術(shù),檢測工廠倉庫貨物的存儲狀態(tài)。四、分析題(本大題共3個小題,共30分)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)保產(chǎn)業(yè)投資協(xié)議書
- 出借咨詢與服務(wù)協(xié)議
- 在線醫(yī)療咨詢平臺推廣合作協(xié)議
- 汽車租賃行業(yè)車輛保險責(zé)任免責(zé)協(xié)議書
- 2025年激光隧道斷面測量系統(tǒng)項目合作計劃書
- 電競酒店宵禁管理協(xié)議
- 第11講 美國 巴西 第2課時 教學(xué)設(shè)計 2023-2024學(xué)年高二下學(xué)期
- 常泰過江通道主橋施工方案
- 第2課 學(xué)會寬容 第一課時 教學(xué)設(shè)計-2023-2024學(xué)年道德與法治六年級下冊統(tǒng)編版
- XX年招生網(wǎng)點加盟合同6篇
- 高中英語北師大版必修第一冊全冊單詞表(按單元編排)
- 垃圾發(fā)電廠汽輪機培訓(xùn)
- 新教科版科學(xué)小學(xué)四年級下冊全冊教案
- 手術(shù)室突然停電應(yīng)急演練
- 2024年心理咨詢師考試題庫
- DLT 593-2016 高壓開關(guān)設(shè)備和控制設(shè)備
- 2024中考語文試卷及答案長沙
- 2024年高考生物總復(fù)習(xí)高中生物必修一全冊重點知識梳理筆記(全冊完整版)
- 商業(yè)綜合體物業(yè)運營方案
- 班級管理的基本原理
- 鄉(xiāng)鎮(zhèn)衛(wèi)生院2025年度工作計劃
評論
0/150
提交評論