![圓錐曲線基本知識_第1頁](http://file4.renrendoc.com/view11/M03/16/0B/wKhkGWek-7aAD0PsAAE6jNk7Q7c131.jpg)
![圓錐曲線基本知識_第2頁](http://file4.renrendoc.com/view11/M03/16/0B/wKhkGWek-7aAD0PsAAE6jNk7Q7c1312.jpg)
![圓錐曲線基本知識_第3頁](http://file4.renrendoc.com/view11/M03/16/0B/wKhkGWek-7aAD0PsAAE6jNk7Q7c1313.jpg)
![圓錐曲線基本知識_第4頁](http://file4.renrendoc.com/view11/M03/16/0B/wKhkGWek-7aAD0PsAAE6jNk7Q7c1314.jpg)
![圓錐曲線基本知識_第5頁](http://file4.renrendoc.com/view11/M03/16/0B/wKhkGWek-7aAD0PsAAE6jNk7Q7c1315.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
演講人:-09圓錐曲線基本知識目錄CONTENT圓錐曲線概述橢圓拋物線雙曲線圓錐曲線的綜合應(yīng)用圓錐曲線的學(xué)習(xí)建議與拓展圓錐曲線概述定義圓錐曲線是由一平面截二次錐面得到的曲線。起源起源于2000多年前的古希臘,由古希臘數(shù)學(xué)家最先開始研究。定義與起源當(dāng)平面與二次錐面的截面為閉合曲線時(shí),形成的圓錐曲線為橢圓(包括圓)。橢圓當(dāng)平面與二次錐面的截面為拋物線時(shí),形成的圓錐曲線為拋物線。拋物線當(dāng)平面與二次錐面的截面為雙曲線時(shí),形成的圓錐曲線為雙曲線。雙曲線圓錐曲線的分類0203圓錐曲線統(tǒng)一定義到平面內(nèi)一定點(diǎn)的距離r與到定直線的距離d之比是常數(shù)e=r/d的點(diǎn)的軌跡叫做圓錐曲線。橢圓、拋物線、雙曲線的統(tǒng)一定義通過調(diào)整常數(shù)e的值(e=r/d),可以得到橢圓(0<e<1)、拋物線(e=1)和雙曲線(e>1)三種圓錐曲線。圓錐曲線的統(tǒng)一定義圓錐曲線的焦點(diǎn)是與準(zhǔn)線相對的點(diǎn),是橢圓、雙曲線的重要特征點(diǎn)。焦點(diǎn)圓錐曲線的準(zhǔn)線是與焦點(diǎn)對應(yīng)的直線,是與圓錐曲線相切的直線。準(zhǔn)線離心率e是圓錐曲線的一個(gè)重要參數(shù),它決定了圓錐曲線的形狀和性質(zhì)。離心率焦點(diǎn)、準(zhǔn)線和離心率02橢圓橢圓是平面內(nèi)到兩定點(diǎn)(焦點(diǎn))F1、F2的距離之和等于常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)P的軌跡。定義橢圓是圓錐曲線的一種,其周長等于特定的正弦曲線在一個(gè)周期內(nèi)的長度;橢圓上任一點(diǎn)到兩焦點(diǎn)的距離之和為常數(shù),等于橢圓的長軸長。性質(zhì)橢圓的定義與性質(zhì)橢圓的標(biāo)準(zhǔn)方程和圖形圖形橢圓形狀由長軸和短軸決定,長軸為2a,短軸為2b;橢圓越扁,離心率越大,橢圓越接近圓,離心率越小。標(biāo)準(zhǔn)方程當(dāng)橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上時(shí),其標(biāo)準(zhǔn)方程為x2/a2+y2/b2=1(a>b);當(dāng)橢圓的中心在原點(diǎn),焦點(diǎn)在y軸上時(shí),其標(biāo)準(zhǔn)方程為y2/a2+x2/b2=1(a>b)。面積公式S=πab,其中a為橢圓長半軸長,b為橢圓短半軸長。應(yīng)用利用橢圓的面積公式可以求解橢圓形的面積問題,如計(jì)算橢圓形的花壇、草坪等面積。橢圓的面積公式及應(yīng)用弦長公式對于橢圓上的任意兩點(diǎn)A、B,若直線AB不經(jīng)過橢圓中心,則AB的長度稱為橢圓的弦長。橢圓上任一弦長公式較為復(fù)雜,需根據(jù)具體情況選擇適當(dāng)?shù)姆椒ㄟM(jìn)行計(jì)算。頂點(diǎn)式橢圓的標(biāo)準(zhǔn)方程可以轉(zhuǎn)化為頂點(diǎn)式,便于求解橢圓的頂點(diǎn)坐標(biāo)。對于形如y=ax2+bx+c的二次函數(shù),其頂點(diǎn)坐標(biāo)為(-b/2a,c-b2/4a),對于橢圓方程y2/a2+x2/b2=1,其頂點(diǎn)坐標(biāo)為(0,±a)和(±b,0)。橢圓的弦長公式和頂點(diǎn)式03拋物線拋物線是指平面內(nèi)到一定點(diǎn)(焦點(diǎn))和一定直線(準(zhǔn)線)距離相等的點(diǎn)的軌跡。定義拋物線是圓錐曲線的一種,具有對稱性,對稱軸與拋物線的軸重合。性質(zhì)拋物線的定義與性質(zhì)拋物線的標(biāo)準(zhǔn)方程和圖形圖形拋物線在坐標(biāo)系中的圖形呈現(xiàn)對稱的形狀,對稱軸為拋物線的軸,開口方向由標(biāo)準(zhǔn)方程決定。標(biāo)準(zhǔn)方程拋物線的標(biāo)準(zhǔn)方程有四種形式,分別為y2=2px,y2=-2px,x2=2py,x2=-2py,其中p為焦點(diǎn)到準(zhǔn)線的距離。焦點(diǎn)拋物線的焦點(diǎn)位于拋物線的軸上,且到拋物線的頂點(diǎn)的距離為p/2。準(zhǔn)線拋物線的焦點(diǎn)與準(zhǔn)線關(guān)系拋物線的準(zhǔn)線與拋物線的軸垂直,且距離焦點(diǎn)p/2。02幾何光學(xué)拋物線在幾何光學(xué)中有重要應(yīng)用,如拋物面鏡可以聚焦平行光線,用于制作望遠(yuǎn)鏡、探照燈等。物理學(xué)在物理學(xué)中,拋物線運(yùn)動(dòng)是常見的運(yùn)動(dòng)形式,如投擲物體、彈道導(dǎo)彈等運(yùn)動(dòng)軌跡均為拋物線。拋物線的應(yīng)用舉例04雙曲線雙曲線是平面交截直角圓錐面的兩半的一類圓錐曲線,還可以定義為與兩個(gè)固定的點(diǎn)(叫做焦點(diǎn))的距離差是常數(shù)的點(diǎn)的軌跡。定義雙曲線有兩個(gè)分支,關(guān)于原點(diǎn)對稱;焦點(diǎn)位于貫穿軸上,它們的中間點(diǎn)叫做中心,中心一般位于原點(diǎn)處。性質(zhì)雙曲線的定義與性質(zhì)標(biāo)準(zhǔn)方程雙曲線的標(biāo)準(zhǔn)方程有多種形式,其中常見的形式為$frac{x^2}{a^2}-frac{y^2}{b^2}=1$(焦點(diǎn)在x軸上)和$frac{y^2}{a^2}-frac{x^2}{b^2}=1$(焦點(diǎn)在y軸上)。圖形特征雙曲線的圖形包括兩個(gè)對稱的分支,分支之間以漸近線為界,隨著x或y的增大,分支逐漸趨近于漸近線。雙曲線的標(biāo)準(zhǔn)方程和圖形VS雙曲線有兩條漸近線,其方程為$y=pmfrac{a}x$,漸近線是雙曲線分支的極限位置,隨著x或y的增大,分支與漸近線的距離趨近于0。離心率雙曲線的離心率e定義為$e=frac{c}{a}$,其中c是焦點(diǎn)到原點(diǎn)的距離,a是雙曲線的實(shí)半軸。離心率e越大,雙曲線的分支越陡峭,離心率e越小,雙曲線的分支越平緩。漸近線雙曲線的漸近線與離心率物理學(xué)應(yīng)用雙曲線在物理學(xué)中常用于描述雙曲線軌道、粒子加速器等。雙曲線的應(yīng)用舉例02幾何學(xué)應(yīng)用在幾何學(xué)中,雙曲線可用于解決一些與距離、角度和比例相關(guān)的問題。03經(jīng)濟(jì)學(xué)應(yīng)用雙曲線在經(jīng)濟(jì)學(xué)中常用于描述某些經(jīng)濟(jì)變量的關(guān)系,如成本曲線、收益曲線等。05圓錐曲線的綜合應(yīng)用雙曲線的應(yīng)用雙曲線在幾何中常用于描述反比例關(guān)系,如電阻與電流的關(guān)系、速度與距離的關(guān)系等。橢圓的應(yīng)用橢圓被廣泛應(yīng)用于幾何中,如橢圓形的鏡子可以反射光線,橢圓形的建筑有獨(dú)特的美學(xué)價(jià)值等。拋物線的應(yīng)用拋物線在幾何中常用于描述物體做拋體運(yùn)動(dòng)的軌跡,如炮彈、噴泉等。此外,拋物線還用于探照燈、雷達(dá)等設(shè)備的反射面設(shè)計(jì)。在幾何問題中的應(yīng)用橢圓的最值問題橢圓上任意一點(diǎn)到兩焦點(diǎn)的距離之和為常數(shù),這個(gè)性質(zhì)可以用于解決一些最值問題,如求橢圓上一點(diǎn)到給定點(diǎn)的最大或最小距離。在最值問題中的應(yīng)用拋物線的最值問題拋物線具有對稱性,其對稱軸上的點(diǎn)到焦點(diǎn)的距離最短,這個(gè)性質(zhì)可以用于解決一些最值問題,如求拋物線上一點(diǎn)到直線的最大或最小距離。雙曲線的最值問題雙曲線具有兩支,可以通過控制參數(shù)來求解最大或最小值,如求解雙曲線上一點(diǎn)到直線的最大或最小距離。在實(shí)際問題中的應(yīng)用橢圓在天文學(xué)中的應(yīng)用行星圍繞太陽的運(yùn)動(dòng)軌跡可以近似看作橢圓,因此橢圓在天文學(xué)中有重要應(yīng)用。拋物線在物理學(xué)中的應(yīng)用拋物線常用于描述物體在重力作用下的運(yùn)動(dòng)軌跡,如炮彈的彈道、跳水運(yùn)動(dòng)員的跳水軌跡等。雙曲線在經(jīng)濟(jì)學(xué)中的應(yīng)用雙曲線可以描述兩種相關(guān)經(jīng)濟(jì)指標(biāo)之間的反比例關(guān)系,如價(jià)格與需求量之間的關(guān)系。06圓錐曲線的學(xué)習(xí)建議與拓展學(xué)習(xí)方法與技巧分享深入理解圓錐曲線的定義和性質(zhì)掌握橢圓、拋物線和雙曲線的定義及其基本性質(zhì),如離心率、焦點(diǎn)、準(zhǔn)線等。靈活運(yùn)用圓錐曲線的公式02熟練掌握圓錐曲線的各種公式,如標(biāo)準(zhǔn)方程、頂點(diǎn)式、準(zhǔn)線方程、焦半徑公式等,并能靈活運(yùn)用它們解決相關(guān)問題。注重圖形分析03通過繪制圓錐曲線的圖形,直觀理解其幾何特性,如對稱性、頂點(diǎn)位置、開口方向等。加強(qiáng)練習(xí)與總結(jié)04通過大量練習(xí),加深對圓錐曲線的理解,并總結(jié)解題方法和技巧。古希臘數(shù)學(xué)家阿波羅尼奧斯他是圓錐曲線研究的先驅(qū),著有《圓錐曲線論》,對圓錐曲線的分類和性質(zhì)進(jìn)行了系統(tǒng)研究。文藝復(fù)興時(shí)期的數(shù)學(xué)家現(xiàn)代數(shù)學(xué)中的應(yīng)用相關(guān)數(shù)學(xué)史與人物介紹在文藝復(fù)興時(shí)期,圓錐曲線的研究得到了進(jìn)一步的發(fā)展,許多數(shù)學(xué)家如達(dá)芬奇、開普勒等都對其進(jìn)行了深入的研究。圓錐曲線在現(xiàn)代數(shù)學(xué)、物理和工程等領(lǐng)域有著廣泛的應(yīng)用,如行星運(yùn)動(dòng)、衛(wèi)星軌道計(jì)算、光學(xué)設(shè)計(jì)等。如焦點(diǎn)性質(zhì)、切線性質(zhì)、極坐標(biāo)方程等,這些高級性質(zhì)在數(shù)學(xué)和物理中有廣泛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年P(guān)F項(xiàng)目安全調(diào)研評估報(bào)告
- 現(xiàn)代企業(yè)匯報(bào)中的視覺設(shè)計(jì)與傳達(dá)技巧
- 砍伐樹木申請書
- 2024-2030年中國林蛙養(yǎng)殖行業(yè)發(fā)展?jié)摿︻A(yù)測及投資戰(zhàn)略研究報(bào)告
- 2025年中國橡膠減震器行業(yè)市場深度分析及發(fā)展趨勢預(yù)測報(bào)告
- “十三五”重點(diǎn)項(xiàng)目-豆奶項(xiàng)目節(jié)能評估報(bào)告(節(jié)能專)
- 擬雙曲度量與廣義反演函數(shù)的相關(guān)研究
- CuCGA嵌入摩擦焊接仿真與試驗(yàn)研究
- 中國上海計(jì)算機(jī)行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報(bào)告
- 固態(tài)鋰電池中LAGP固態(tài)電解質(zhì)界面改性及性能研究
- 華為認(rèn)證 HCIA-Security 安全 H12-711考試題庫(共800多題)
- 員工技能熟練度評價(jià)
- 部編新教材人教版七年級上冊歷史重要知識點(diǎn)歸納
- DB51∕T 2681-2020 預(yù)拌混凝土攪拌站廢水廢漿回收利用技術(shù)規(guī)程
- 重點(diǎn)時(shí)段及節(jié)假日前安全檢查表
- 道路標(biāo)線施工技術(shù)規(guī)程(已執(zhí)行)
- 給排水管道工程分項(xiàng)、分部、單位工程劃分
- 《傻子上學(xué)》臺詞
- 高中英語新課程標(biāo)準(zhǔn)解讀 (課堂PPT)
- 石灰石石膏濕法脫硫化學(xué)分析方案
- 《數(shù)學(xué)趣味活動(dòng)》PPT課件.ppt
評論
0/150
提交評論