珠海城市職業(yè)技術(shù)學院《U設(shè)計》2023-2024學年第一學期期末試卷_第1頁
珠海城市職業(yè)技術(shù)學院《U設(shè)計》2023-2024學年第一學期期末試卷_第2頁
珠海城市職業(yè)技術(shù)學院《U設(shè)計》2023-2024學年第一學期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學號:凡年級專業(yè)、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁珠海城市職業(yè)技術(shù)學院《U設(shè)計》

2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、目標檢測是計算機視覺中的重要任務(wù)之一,旨在定位和識別圖像中的多個目標。假設(shè)我們要在城市街道的圖像中檢測行人和車輛。對于處理這種復(fù)雜場景的目標檢測任務(wù),以下哪種技術(shù)通常能提供更準確的檢測結(jié)果?()A.基于滑動窗口的傳統(tǒng)目標檢測方法B.基于區(qū)域提議的目標檢測算法,如R-CNN系列C.基于回歸的一階段目標檢測算法,如YOLO系列D.基于聚類的目標檢測方法2、在進行圖像增強時,我們常常需要在保持圖像細節(jié)的同時改善圖像質(zhì)量。假設(shè)一張低光照條件下拍攝的圖像存在大量噪聲,以下哪種圖像增強方法可能不太適合處理這種情況?()A.直方圖均衡化B.基于小波變換的去噪方法C.中值濾波D.高斯濾波3、當利用計算機視覺進行圖像去模糊任務(wù),恢復(fù)清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是4、在計算機視覺的目標跟蹤任務(wù)中,跟蹤一個移動的物體具有挑戰(zhàn)性。假設(shè)要在一段視頻中跟蹤一個快速移動的車輛,以下關(guān)于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的目標跟蹤算法在處理非線性運動時效果最佳B.深度學習中的相關(guān)濾波方法能夠快速適應(yīng)目標的外觀變化和遮擋情況C.目標跟蹤算法不需要考慮目標的尺度變化和旋轉(zhuǎn)D.目標跟蹤的準確性只取決于初始幀中目標的定位精度5、計算機視覺中的語義分割旨在為圖像中的每個像素分配一個類別標簽。假設(shè)要對醫(yī)學影像中的腫瘤區(qū)域進行語義分割,以下關(guān)于模型評估指標的選擇,哪一項是最為關(guān)鍵的?()A.準確率,即正確分類的像素比例B.召回率,即正確分割出腫瘤像素的比例C.F1分數(shù),綜合考慮準確率和召回率D.平均交并比(MIoU),衡量分割結(jié)果與真實標簽的重合程度6、假設(shè)要開發(fā)一個能夠自動識別水果種類和品質(zhì)的計算機視覺系統(tǒng),用于水果分揀和質(zhì)量評估。在獲取水果圖像時,可能會受到光照、角度和遮擋等因素的影響。為了提高識別的準確性和魯棒性,以下哪種圖像預(yù)處理技術(shù)可能是關(guān)鍵?()A.圖像增強B.圖像去噪C.圖像歸一化D.圖像分割7、計算機視覺中的光流估計用于計算圖像中像素的運動信息。假設(shè)要估計一段視頻中物體的運動速度和方向,以下關(guān)于光流估計方法的描述,正確的是:()A.傳統(tǒng)的基于梯度的光流估計方法在復(fù)雜場景中能夠準確計算光流B.深度學習中的光流估計網(wǎng)絡(luò)不需要大量的標注數(shù)據(jù)進行訓練C.光流估計的結(jié)果不受圖像噪聲和模糊的影響D.結(jié)合時空信息的深度學習光流估計方法能夠提高估計的準確性和魯棒性8、在計算機視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實性?()A.基于擴散的修復(fù)方法B.基于深度學習的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進行修復(fù),保留圖像的缺失部分9、在計算機視覺中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過插值、基于模型的方法或深度學習方法來實現(xiàn)B.深度學習方法在圖像超分辨率重建中能夠生成更清晰、逼真的細節(jié)C.圖像超分辨率重建在醫(yī)學圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制10、圖像分類是計算機視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動提取特征+深度學習分類器D.顏色直方圖特征+樸素貝葉斯11、在計算機視覺的車牌識別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準確識別出車牌號碼。以下哪種技術(shù)可能有助于提高識別準確率?()A.字符分割和單獨識別B.利用深度學習模型進行端到端的識別C.只關(guān)注車牌的顏色特征D.隨機猜測車牌號碼12、對于視頻中的目標跟蹤任務(wù),假設(shè)目標在視頻中經(jīng)歷了快速的外觀變化和嚴重的遮擋。以下哪種策略有助于保持跟蹤的準確性和穩(wěn)定性?()A.結(jié)合目標的運動模型和外觀模型進行預(yù)測B.僅依賴目標的初始外觀特征進行跟蹤C.當出現(xiàn)遮擋時,停止跟蹤并等待目標重新出現(xiàn)D.隨機調(diào)整跟蹤算法的參數(shù)13、在計算機視覺的姿態(tài)估計任務(wù)中,需要確定物體在三維空間中的方向和位置。假設(shè)要估計一個機器人手臂的姿態(tài),以實現(xiàn)精確的控制和操作。以下哪種姿態(tài)估計方法在處理這種機械結(jié)構(gòu)時準確性更高?()A.基于模型的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于視覺慣性里程計的姿態(tài)估計D.基于幾何約束的姿態(tài)估計14、計算機視覺中的手勢識別用于理解人的手勢動作。假設(shè)要在一個智能交互系統(tǒng)中實現(xiàn)實時準確的手勢識別,以下關(guān)于手勢識別方法的描述,正確的是:()A.基于傳感器的手勢識別方法能夠精確獲取手勢的運動信息,但佩戴傳感器不方便B.基于視覺的手勢識別方法不受環(huán)境光照和背景的影響,識別穩(wěn)定性高C.深度學習中的卷積神經(jīng)網(wǎng)絡(luò)在手勢識別中無法處理復(fù)雜的手勢變化和遮擋D.手勢識別系統(tǒng)只要能夠識別常見的幾種手勢,就能夠滿足大多數(shù)應(yīng)用需求15、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關(guān)于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠?qū)D像中的每個像素分類為不同的場景元素,但無法提供元素之間的關(guān)系B.目標檢測結(jié)合語義分割可以實現(xiàn)對場景的初步理解,但對于復(fù)雜的場景結(jié)構(gòu)難以準確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關(guān)系,但建模過程復(fù)雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在餐飲行業(yè)中的食品質(zhì)量檢測和服務(wù)優(yōu)化。2、(本題5分)解釋計算機視覺在衛(wèi)星遙感圖像分析中的應(yīng)用。3、(本題5分)解釋計算機視覺中的模型剪枝技術(shù)。4、(本題5分)說明計算機視覺在海洋聲學研究中的作用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)利用圖像增強技術(shù),提升水下拍攝圖像的清晰度和對比度。2、(本題5分)對監(jiān)控視頻中的車輛進行車型識別和顏色識別。3、(本題5分)使用目標檢測技術(shù),從氣象衛(wèi)星圖像中檢測出惡劣天氣區(qū)域。4、(本題5分)運用圖像識別技術(shù),檢測火車站安檢口的危險物品。5、(本題5分)利用圖像識別技術(shù),檢測超市貨架上商品的擺放是否整齊。四、分析題(本大題共4個小題,共40分)1、(本題10分)觀察某藝術(shù)展覽的邀請函設(shè)計,闡述其如何通過視覺傳達吸引嘉賓參加展覽。2、(本題10分)一款新推出的智能手機品牌,其產(chǎn)品包裝設(shè)計簡約而精致,材質(zhì)選擇獨特。請分析此包裝設(shè)計在突出產(chǎn)品特點、提升品牌價值以及滿足消

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論