




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年外研版2024高二數(shù)學(xué)上冊(cè)月考試卷984考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共7題,共14分)1、下列命題正確的是()
①線性相關(guān)系數(shù)r越大;兩個(gè)變量的線性相關(guān)性越強(qiáng)。
②殘差平方和越小的模型;擬合效果越好。
③用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小;說(shuō)明模型的擬合效果越好。
④回歸模型都是線性的.
A.②
B.①②
C.①④
D.②③
2、觀察下面的圓錐曲線;其中離心率最小的是()
A.
B.
C.
D.
3、已知點(diǎn)Q在直線OP上運(yùn)動(dòng),則當(dāng)取得最小值時(shí),點(diǎn)Q的坐標(biāo)為()A.B.C.D.4、【題文】如圖,目標(biāo)函數(shù)的可行域?yàn)樗倪呅危ê吔纾?,若是該目?biāo)函數(shù)的最優(yōu)解,則實(shí)數(shù)的取值范圍是。
A.B.C.D.5、【題文】.在中,角所對(duì)的邊分別為.若則的值為A.B.C.D.6、某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么互斥而不對(duì)立的兩個(gè)事件是()A.至少有1名男生和至少有1名女生B.恰有1名男生和恰有2名男生C.至少有1名男生和都是女生D.至多有1名男生和都是女生7、若p:θ=+2kπ,k∈Z,q:y=cos(ωx+θ)(ω≠0)是奇函數(shù),則p是q的()A.充要條件B.充分不必要條件C.必要不充分條件D.既不充分也不必要的條件評(píng)卷人得分二、填空題(共9題,共18分)8、已知是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根,且則的取值范圍是_________9、現(xiàn)有爬行、哺乳、飛行三類動(dòng)物,其中蛇、____屬于爬行動(dòng)物;河貍、狗屬于____;鷹、____屬于飛行動(dòng)物;請(qǐng)你把下列結(jié)構(gòu)圖補(bǔ)充完整.
10、【題文】若以連續(xù)拋擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率為_(kāi)_______.11、【題文】已知復(fù)數(shù)z="1-"i,則=____________12、【題文】數(shù)列的一個(gè)通項(xiàng)公式為_(kāi)___.13、設(shè)x=1與x=2是函數(shù)f(x)=alnx+bx2+x的兩個(gè)極值點(diǎn).則常數(shù)a=______.14、某縣10000名學(xué)生的某次數(shù)學(xué)考試成績(jī)X服從正態(tài)分布,其密度函數(shù)曲線如圖,則成績(jī)X位于區(qū)間(52,68]的人數(shù)大約是______.
P(μ-σ<X≤μ+σ)=0.6826;
P(μ-2σ<X≤μ+2σ)=0.9544;
P(μ-3σ<X≤μ+3σ)=0.9974.15、如圖在Rt△ABC中∠ACB=90°,CD⊥AB,AC=6,AD=3.6,則BD=______.
16、已知f(x)=lgx
函數(shù)f(x)
定義域中任意的x12(x1鈮?x2)
有如下結(jié)論:
壟脵0<f隆盲(3)<f(3)鈭?f(2)<f隆盲(2)
壟脷0<f隆盲(3)<f隆盲(2)<f(3)鈭?f(2)
壟脹f(x1)鈭?f(x2)x1鈭?x2>0
壟脺f(x1+x22)<f(x1)+f(x2)2
.
上述結(jié)論中正確結(jié)論的序號(hào)是______.評(píng)卷人得分三、作圖題(共8題,共16分)17、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
18、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.(如圖所示)19、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最?。ㄈ鐖D所示)20、著名的“將軍飲馬”問(wèn)題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
21、A是銳角MON內(nèi)部任意一點(diǎn),在∠MON的兩邊OM,ON上各取一點(diǎn)B,C,組成三角形,使三角形周長(zhǎng)最小.(如圖所示)22、已知,A,B在直線l的兩側(cè),在l上求一點(diǎn),使得PA+PB最小.(如圖所示)23、分別畫(huà)一個(gè)三棱錐和一個(gè)四棱臺(tái).評(píng)卷人得分四、解答題(共3題,共30分)24、如右圖,某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A、B及CD的中點(diǎn)P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO、BO、OP,設(shè)排污管道的總長(zhǎng)度為km.(1)按下列要求寫(xiě)出函數(shù)關(guān)系式:①設(shè)∠BAO=(rad),將表示成的函數(shù);②設(shè)OP(km),將表示成的函數(shù).(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使鋪設(shè)的排污管道總長(zhǎng)度最短.25、【題文】(本小題滿分12分)函數(shù)在一個(gè)周期內(nèi),當(dāng)時(shí),取最小值1;當(dāng)時(shí),最大值3.(I)求的解析式;(II)求在區(qū)間上的最值.26、【題文】(本小題滿分12分)
已知的兩個(gè)頂點(diǎn)的坐標(biāo)為且的斜率之積等于若頂點(diǎn)的軌跡是雙曲線(去掉兩個(gè)頂點(diǎn)),求的取值范圍.評(píng)卷人得分五、計(jì)算題(共1題,共2分)27、已知z1=5+10i,z2=3﹣4i,求z.評(píng)卷人得分六、綜合題(共2題,共12分)28、如圖,在直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過(guò)AB,C三點(diǎn)的拋物的對(duì)稱軸為直線l,D為對(duì)稱軸l上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時(shí)點(diǎn)D的坐標(biāo);
(3)以點(diǎn)A為圓心;以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時(shí);直線BD與⊙A相切;
②寫(xiě)出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo):____.29、(2009?新洲區(qū)校級(jí)模擬)如圖,已知直角坐標(biāo)系內(nèi)有一條直線和一條曲線,這條直線和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個(gè)分支,點(diǎn)P是這條曲線上任意一點(diǎn),它的坐標(biāo)是(a、b),由點(diǎn)P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點(diǎn)E、F.則AF?BE=____.參考答案一、選擇題(共7題,共14分)1、A【分析】
線性相關(guān)系數(shù)|r|越大;兩個(gè)變量的線性相關(guān)性越強(qiáng);故①不正確;
殘差平方和越小的模型;擬合的效果越好,②正確。
用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越大;說(shuō)明模型的擬合效果越好,③不正確;
回歸模型有線性的和非線性的.④不正確;
綜上可知②正確;
故選A.
【解析】【答案】線性相關(guān)系數(shù)|r|越大,兩個(gè)變量的線性相關(guān)性越強(qiáng),殘差平方和越小的模型,擬合的效果越好,用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越大;說(shuō)明模型的擬合效果越好,根據(jù)對(duì)于回歸模型有線性的和非線性的得到④不正確.
2、B【分析】
因?yàn)閽佄锞€的離心率為1;雙曲線的離心率大于1,橢圓的離心率小于1,所以排除選項(xiàng)C,D.
又因?yàn)闄E圓的離心率越大;橢圓越扁;
所以A中的離心率大于B中的離心率.
故選B.
【解析】【答案】因?yàn)閽佄锞€的離心率為1;雙曲線的離心率大于1,橢圓的離心率小于1,所以排除選項(xiàng)C,D.橢圓的離心率越大,橢圓越扁,得到選項(xiàng).
3、C【分析】【解析】
設(shè)Q(x,y,z)∵A(1,2,3),(2,1,2),P(1,1,2),則由點(diǎn)Q在直線OP上可得存在實(shí)數(shù)λ使得OQ=λOP=(λ,λ,2λ)則Q(λ,λ,2λ)QA=(1-λ,2-λ,3-2λ),QB=(2-λ,1-λ,2-2λ)∴QA?QB=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=2(3λ2-8λ+5)根據(jù)二次函數(shù)的性質(zhì)可得當(dāng)λ=4/3時(shí),取得最小值-2/3此時(shí)Q故答選C【解析】【答案】C4、C【分析】【解析】
試題分析:根據(jù)已知的可行域,及再用角點(diǎn)法,若目標(biāo)函數(shù)z=ax-y在點(diǎn)C處取得最優(yōu)解,根據(jù)在C點(diǎn)有最優(yōu)解,則過(guò)C的直線z=ax-y與可行域只有一個(gè)交點(diǎn)或與邊界AC、BC所在的直線重合,利用直線的斜率之間的關(guān)系,即求出實(shí)數(shù)a的取值范圍。直線z=ax-y的斜率為a,若C
是該目標(biāo)函數(shù)z=ax-y的最優(yōu)解,則過(guò)C的直線z=ax-y與可行域只有一個(gè)交點(diǎn)或與邊界AC、BC所在的直線重合,
因?yàn)楣蔬xC.
考點(diǎn):線性規(guī)劃的最優(yōu)解。
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法反求參數(shù)的范圍,屬于基礎(chǔ)題【解析】【答案】C5、B【分析】【解析】略【解析】【答案】B6、B【分析】【解答】解:至少有1名男生和至少有1名女生;兩者能同時(shí)發(fā)生,故A中兩個(gè)事件不是互斥事件,也不是對(duì)立事件;
恰有1名男生和恰有兩名男生;兩者不能同時(shí)發(fā)生,且不對(duì)立,故B是互斥而不對(duì)立事件;
至少有1名男生和全是女生;兩個(gè)事件不可能同時(shí)發(fā)生,且兩個(gè)事件的和事件是全集,故C中兩個(gè)事件是對(duì)立事件;
至多有1名男生和都是女生;兩者能同時(shí)發(fā)生,故A中兩個(gè)事件不是互斥事件,也不是對(duì)立事件;
故選:B.
【分析】互斥事件是兩個(gè)事件不包括共同的事件,對(duì)立事件首先是互斥事件,再就是兩個(gè)事件的和事件是全集,由此規(guī)律對(duì)四個(gè)選項(xiàng)逐一驗(yàn)證即可得到答案.7、B【分析】【解答】解:若θ=+2kπ,則y=cos(ωx+θ)=cos(ωx++2kπ)=﹣sinωx為奇函數(shù);即充分性成立;
若y=cos(ωx+θ)(ω≠0)是奇函數(shù),則θ=+kπ,k∈Z,則θ=+2kπ;k∈Z不一定成立;
即p是q的充分不必要條件;
故選:B
【分析】根據(jù)充分條件和必要條件的定義結(jié)合三角函數(shù)的性質(zhì)進(jìn)行判斷即可.二、填空題(共9題,共18分)8、略
【分析】試題分析:利用二次方程根的分布,建立不等式關(guān)系,利用線性規(guī)劃以及的幾何意義求的取值范圍.∵是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根,∴設(shè)函數(shù)∵.∴即作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:設(shè)則z的幾何意義是區(qū)域內(nèi)的點(diǎn)P(a,b)到定點(diǎn)A(1,2)兩點(diǎn)之間斜率的取值范圍,由圖象可知當(dāng)P位于點(diǎn)B(﹣3,1)時(shí),直線AB的斜率最小,此時(shí)可知當(dāng)P位于點(diǎn)D(﹣1,0)時(shí),直線AD的斜率最大,此時(shí)∴則的取值范圍是.故答案為:.考點(diǎn):二次方程根的分布;線性規(guī)劃;二次函數(shù);目標(biāo)函數(shù)的幾何意義.【解析】【答案】9、略
【分析】
爬行;哺乳、飛行三類動(dòng)物的組織結(jié)構(gòu)圖為:
【解析】【答案】設(shè)計(jì)的這個(gè)結(jié)構(gòu)圖從整體上要反映數(shù)的結(jié)構(gòu);從左向右要反映的是要素之間的從屬關(guān)系.在畫(huà)結(jié)構(gòu)圖時(shí),應(yīng)根據(jù)具體需要確定復(fù)雜程度.簡(jiǎn)潔的結(jié)構(gòu)圖有時(shí)能更好地反映主體要素之間的關(guān)系和系統(tǒng)的整體特點(diǎn).同時(shí),要注意結(jié)構(gòu)圖,通常按照從上到下;從左到右的方向順序表示,各要素間的從屬關(guān)系較多時(shí),常用方向箭頭示意.
10、略
【分析】【解析】∵試驗(yàn)發(fā)生的總事件數(shù)是6×6;
而點(diǎn)P落在圓x2+y2=16內(nèi)包括(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8種,由古典概型公式得到P==【解析】【答案】11、略
【分析】【解析】因?yàn)閺?fù)數(shù)z="1-"i,則【解析】【答案】2i12、略
【分析】【解析】略【解析】【答案】13、略
【分析】解:f′(x)=+2bx+1;
由題意知;f′(1)=f′(2)=0;
即a+2b+1=0,+4b+1=0
解得,a=b=.
故答案為:-.
求導(dǎo)后令極值點(diǎn)處導(dǎo)數(shù)為0即可求出a,b的值.
本題考查了學(xué)生對(duì)導(dǎo)數(shù)求極值的理解,是基礎(chǔ)題.【解析】14、略
【分析】解:由題圖知X~N(μ,σ2);其中μ=60,σ=8;
∴P(μ-σ<X≤μ+σ)=P(52<X≤68)=0.6826.
∴人數(shù)為0.6826×10000≈6820.
故答案為:6820.
由題圖知X~N(μ,σ2);其中μ=60,σ=8,P(μ-σ<X≤μ+σ)=P(52<X≤68)=0.6826,從而得出成績(jī)?cè)冢?3,68]范圍內(nèi)的學(xué)生人數(shù).
本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查曲線的變化特點(diǎn),本題是一個(gè)基礎(chǔ)題.【解析】682015、略
【分析】解:∵△ABC是直角三角形;CD⊥AB;
∴∠A+∠B=90°;∠A+∠ACD=90°;
∴∠B=∠ACD;
∴△ACD∽△ABC;
∴
∵AC=6;AD=3.6;
∴AB=10;
∴BD=10-3.6=6.4.
故答案為:6.4.
先根據(jù)相似三角形的判定定理得出△ACD∽△ABC;再根據(jù)相似三角形的對(duì)應(yīng)邊成比例得到比例式后代入AC和AD的值即可求得結(jié)果.
本題考查的是相似三角形的判定與性質(zhì)及勾股定理,根據(jù)題意判斷出△ACD∽△ABC是解答此題的關(guān)鍵.【解析】6.416、略
【分析】解:對(duì)于壟脵壟脷
由于f隆盲(3)f隆盲(2)
分別表示f(x)
在x=3x=2
處的切線斜率,f(3)鈭?f(2)
表示(2,f(2))
與。
(3,f(3))
兩點(diǎn)連線的斜率;畫(huà)出f(x)
的圖象,數(shù)學(xué)結(jié)合判斷出壟脵
對(duì)。
對(duì)于壟脹f(x1)鈭?f(x2)x1鈭?x2
表示y=lgx
上任兩個(gè)點(diǎn)的連線的斜率,由于y=lgx
是增函數(shù),故有f(x1)鈭?f(x2)x1鈭?x2>0
成立;故壟脹
正確。
對(duì)于壟脺
由于f(x)
的圖象時(shí)上凸性質(zhì),所以有f(x1+x22)>f(x1)+f(x2)2
故壟脺
不正確。
故答案為:壟脵壟脹
據(jù)導(dǎo)數(shù)的幾何意義及對(duì)數(shù)函數(shù)的圖象特點(diǎn);判斷出壟脵
對(duì)壟脷
錯(cuò);利用對(duì)數(shù)函數(shù)的圖象其任意兩點(diǎn)連線的斜率都大于0
判斷出壟脹
對(duì);利用對(duì)數(shù)函數(shù)的圖象上凸得到壟脺
錯(cuò).
解決基本初等函數(shù)的一些性質(zhì)時(shí),通常借助它們的圖象,數(shù)形結(jié)合得到結(jié)論.【解析】壟脵壟脹
三、作圖題(共8題,共16分)17、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
18、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.19、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最小;
理由是兩點(diǎn)之間,線段最短.20、略
【分析】【分析】根據(jù)軸對(duì)稱的性質(zhì)作出B點(diǎn)與河面的對(duì)稱點(diǎn)B′,連接AB′,AB′與河面的交點(diǎn)C即為所求.【解析】【解答】解:作B點(diǎn)與河面的對(duì)稱點(diǎn)B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對(duì)稱的性質(zhì)可知AB′=AC+BC;
根據(jù)兩點(diǎn)之間線段最短的性質(zhì)可知;C點(diǎn)即為所求.
21、略
【分析】【分析】作出A關(guān)于OM的對(duì)稱點(diǎn)A',關(guān)于ON的A對(duì)稱點(diǎn)A'',連接A'A'',根據(jù)兩點(diǎn)之間線段最短即可判斷出使三角形周長(zhǎng)最小的A、B的值.【解析】【解答】解:作A關(guān)于OM的對(duì)稱點(diǎn)A';關(guān)于ON的A對(duì)稱點(diǎn)A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關(guān)于OM對(duì)稱;A與A″關(guān)于ON對(duì)稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點(diǎn)之間線段最短,A'A''為△ABC的最小值.22、略
【分析】【分析】顯然根據(jù)兩點(diǎn)之間,線段最短,連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn).【解析】【解答】解:連接兩點(diǎn)與直線的交點(diǎn)即為所求作的點(diǎn)P;
這樣PA+PB最??;
理由是兩點(diǎn)之間,線段最短.23、解:畫(huà)三棱錐可分三步完成。
第一步:畫(huà)底面﹣﹣畫(huà)一個(gè)三角形;
第二步:確定頂點(diǎn)﹣﹣在底面外任一點(diǎn);
第三步:畫(huà)側(cè)棱﹣﹣連接頂點(diǎn)與底面三角形各頂點(diǎn).
畫(huà)四棱可分三步完成。
第一步:畫(huà)一個(gè)四棱錐;
第二步:在四棱錐一條側(cè)棱上取一點(diǎn);從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段;
第三步:將多余線段擦去.
【分析】【分析】畫(huà)三棱錐和畫(huà)四棱臺(tái)都是需要先畫(huà)底面,再確定平面外一點(diǎn)連接這點(diǎn)與底面上的頂點(diǎn),得到錐體,在畫(huà)四棱臺(tái)時(shí),在四棱錐一條側(cè)棱上取一點(diǎn),從這點(diǎn)開(kāi)始,順次在各個(gè)面內(nèi)畫(huà)與底面對(duì)應(yīng)線段平行的線段,將多余線段擦去,得到圖形.四、解答題(共3題,共30分)24、略
【分析】
(1)①由條件知PQ垂直平分AB,若∠BAO=(rad),則,故,又OP=,所以,所求函數(shù)關(guān)系式為②若OP=(km),則OQ=10-,所以O(shè)A=OB=所求函數(shù)關(guān)系式為(2)選擇函數(shù)模型①,令0得sin,因?yàn)椋?,當(dāng)時(shí),,是的減函數(shù);當(dāng)時(shí),,是的增函數(shù),所以函數(shù)在=時(shí)取得極小值,這個(gè)極小值就是最小值..這時(shí)(km)因此,當(dāng)污水處理廠建在矩形區(qū)域內(nèi)且到A、B的距離均為(km)時(shí),鋪設(shè)的排污管道總長(zhǎng)度最短.【解析】【答案】25、略
【分析】【解析】略【解析】【答案】解:(I)∵在一個(gè)周期內(nèi),當(dāng)時(shí),取最小值1;當(dāng)時(shí),最大值3.
∴3分。
由當(dāng)時(shí),最大值3得
∵∴
6分。
(II)∵∴8分。
∴當(dāng)時(shí),取最大值10分。
當(dāng)時(shí),取最小值1.12分26、略
【分析】【解析】略【解析】【答案】設(shè)點(diǎn)的坐標(biāo)為則(1分)
的斜率為的斜率為(3分)
依題意有(4分)
化簡(jiǎn)得(6分)
因?yàn)樗栽匠炭苫癁棰伲?分)
若則方程①表示的軌跡是圓或橢圓(去掉與軸的交點(diǎn));(10分)
若則方程①表示的軌跡是焦點(diǎn)在軸上的雙曲線(去掉兩個(gè)頂點(diǎn))
所以所求的取值范圍是.(12分)五、計(jì)算題(共1題,共2分)27、解:∴
又∵z1=5+10i,z2=3﹣4i
∴【分析】【分析】把z1、z2代入關(guān)系式,化簡(jiǎn)即可六、綜合題(共2題,共12分)28、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點(diǎn)D,根據(jù)拋物線對(duì)稱軸的性質(zhì),點(diǎn)B與點(diǎn)A關(guān)于直線l對(duì)稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點(diǎn)之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點(diǎn);
設(shè)出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點(diǎn)D的坐標(biāo).
(3)由(2)可知,當(dāng)AD+CD最短時(shí),D在直線BC上,由于已知A,B,C,D四點(diǎn)坐標(biāo),根據(jù)線段之間的長(zhǎng)度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長(zhǎng)定理知,另一點(diǎn)D與現(xiàn)在的點(diǎn)D關(guān)于x軸對(duì)稱,所以另一點(diǎn)D的坐標(biāo)為(1,-2).【解析】【解答】解:
(1)設(shè)拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山西同文職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 2025年安陽(yáng)幼兒師范高等??茖W(xué)校高職單招職業(yè)技能測(cè)試近5年常考版參考題庫(kù)含答案解析
- 2025年寧德職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2019-2024歷年真題考點(diǎn)試卷含答案解析
- bprt培訓(xùn)課件教學(xué)課件
- 軟件定制開(kāi)發(fā)項(xiàng)目合同書(shū)
- 202x工作匯報(bào)年終總結(jié)模板4
- 大恐龍創(chuàng)意畫(huà)課件
- 人教版數(shù)學(xué)六年級(jí)下冊(cè)第一單元《負(fù)數(shù)》單元測(cè)試
- 貴州航天職業(yè)技術(shù)學(xué)院《羽毛球3》2023-2024學(xué)年第一學(xué)期期末試卷
- 畢節(jié)工業(yè)職業(yè)技術(shù)學(xué)院《俄羅斯國(guó)情文化》2023-2024學(xué)年第二學(xué)期期末試卷
- 危險(xiǎn)化學(xué)品出入庫(kù)管理制度
- 醫(yī)學(xué)課件新生兒黃疸5
- 水泥攪拌樁施工記錄-自動(dòng)計(jì)算
- 珠寶加工合伙人協(xié)議書(shū)正式
- 黑龍江省龍東地區(qū)2024年中考語(yǔ)文真題試卷【附真題答案】
- 2024年廣東省南海區(qū)中考一模數(shù)學(xué)試題(解析版)
- 技術(shù)標(biāo)標(biāo)書(shū)范本
- MOOC 思辨式英文寫(xiě)作-南開(kāi)大學(xué) 中國(guó)大學(xué)慕課答案
- 辦公室安全用電培訓(xùn)
- 國(guó)家安全+你我共筑-415國(guó)家安全教育主題班會(huì)課件
- 雪鐵龍DS6說(shuō)明書(shū)
評(píng)論
0/150
提交評(píng)論