瀘州職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
瀘州職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
瀘州職業(yè)技術(shù)學(xué)院《人工智能導(dǎo)論實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)瀘州職業(yè)技術(shù)學(xué)院

《人工智能導(dǎo)論實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、當(dāng)利用人工智能進(jìn)行智能醫(yī)療影像診斷,例如檢測(cè)腫瘤或病變,以下哪種挑戰(zhàn)和問(wèn)題可能是需要重點(diǎn)解決的?()A.數(shù)據(jù)標(biāo)注的準(zhǔn)確性和一致性B.模型的泛化能力和魯棒性C.結(jié)果的解釋和臨床可接受性D.以上都是2、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶(hù)提供個(gè)性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過(guò)濾算法只考慮用戶(hù)的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶(hù)推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無(wú)法滿(mǎn)足所有用戶(hù)的需求3、在人工智能的智能推薦系統(tǒng)中,冷啟動(dòng)問(wèn)題是指在新用戶(hù)或新物品加入時(shí)缺乏足夠的歷史數(shù)據(jù)進(jìn)行準(zhǔn)確推薦。假設(shè)要解決一個(gè)新上線電商平臺(tái)的冷啟動(dòng)問(wèn)題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門(mén)商品的推薦C.基于用戶(hù)社交關(guān)系的推薦D.以上策略結(jié)合使用4、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類(lèi)的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法5、人工智能中的模型壓縮技術(shù)用于減少模型的參數(shù)和計(jì)算量。假設(shè)要在資源受限的設(shè)備上部署一個(gè)大型的神經(jīng)網(wǎng)絡(luò)模型,以下關(guān)于模型壓縮的描述,正確的是:()A.剪枝技術(shù)通過(guò)刪除不重要的神經(jīng)元和連接來(lái)壓縮模型,不會(huì)影響模型性能B.量化技術(shù)將模型的參數(shù)從浮點(diǎn)數(shù)轉(zhuǎn)換為整數(shù),會(huì)導(dǎo)致較大的精度損失C.知識(shí)蒸餾將復(fù)雜模型的知識(shí)轉(zhuǎn)移到簡(jiǎn)單模型中,但效果不如直接使用復(fù)雜模型D.模型壓縮技術(shù)會(huì)犧牲一定的模型性能,但可以顯著提高模型的部署效率6、在人工智能的文本分類(lèi)任務(wù)中,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類(lèi)中深度學(xué)習(xí)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以自動(dòng)學(xué)習(xí)文本的特征表示B.對(duì)于長(zhǎng)文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好7、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類(lèi),以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類(lèi)效果?()A.支持向量機(jī)B.決策樹(shù)C.聚類(lèi)分析D.以上都有可能8、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型精度D.以上都是9、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺(jué)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類(lèi)和語(yǔ)義分割是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)B.計(jì)算機(jī)視覺(jué)技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺(jué)系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺(jué)技術(shù)的發(fā)展10、當(dāng)利用人工智能進(jìn)行欺詐檢測(cè),例如在金融交易中識(shí)別異常行為,以下哪種特征和模型可能是關(guān)鍵的因素?()A.用戶(hù)行為特征B.交易模式特征C.復(fù)雜的深度學(xué)習(xí)模型D.以上都是11、在人工智能的自然語(yǔ)言生成中,故事生成是一個(gè)富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計(jì)算機(jī)生成一個(gè)富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會(huì)背景D.故事生成不需要考慮讀者的喜好和期望12、在人工智能的圖像識(shí)別任務(wù)中,卷積神經(jīng)網(wǎng)絡(luò)(CNN)被廣泛應(yīng)用。假設(shè)要設(shè)計(jì)一個(gè)用于識(shí)別手寫(xiě)數(shù)字的卷積神經(jīng)網(wǎng)絡(luò),以下哪個(gè)因素對(duì)于提高識(shí)別準(zhǔn)確率至關(guān)重要?()A.增加卷積層的數(shù)量B.減少池化層的大小C.選擇合適的激活函數(shù)D.增加全連接層的神經(jīng)元數(shù)量13、在人工智能的推薦系統(tǒng)中,例如為用戶(hù)推薦電影、音樂(lè)或商品,需要考慮用戶(hù)的歷史行為、偏好和當(dāng)前的情境信息。假設(shè)一個(gè)用戶(hù)的興趣偏好經(jīng)常變化,以下哪種方法能夠更好地適應(yīng)這種動(dòng)態(tài)的用戶(hù)偏好?()A.基于協(xié)同過(guò)濾的推薦,依賴(lài)其他用戶(hù)的行為B.基于內(nèi)容的推薦,分析物品的特征C.混合推薦,結(jié)合多種推薦方法D.始終使用固定的推薦策略,不進(jìn)行調(diào)整14、在人工智能的研究中,模型的可解釋性是一個(gè)重要的問(wèn)題。假設(shè)開(kāi)發(fā)了一個(gè)用于預(yù)測(cè)股票價(jià)格的人工智能模型,但用戶(hù)對(duì)模型的決策過(guò)程和結(jié)果缺乏理解和信任。以下哪種方法能夠提高模型的可解釋性,讓用戶(hù)更好地理解模型是如何做出預(yù)測(cè)的?()A.繪制復(fù)雜的模型架構(gòu)圖B.提供特征重要性分析C.使用更多的隱藏層D.增加模型的參數(shù)數(shù)量15、在人工智能的文本分類(lèi)任務(wù)中,類(lèi)別不平衡是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)數(shù)據(jù)集包含大量屬于某一主要類(lèi)別的樣本,而其他類(lèi)別的樣本數(shù)量較少。以下哪種方法在處理類(lèi)別不平衡問(wèn)題時(shí)最為有效,能夠提高少數(shù)類(lèi)別的分類(lèi)性能?()A.重采樣技術(shù)B.代價(jià)敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用16、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來(lái)了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實(shí)現(xiàn)家電的智能控制和自動(dòng)化運(yùn)行,根據(jù)用戶(hù)的習(xí)慣和需求進(jìn)行個(gè)性化設(shè)置B.通過(guò)語(yǔ)音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測(cè)C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級(jí)階段,功能較為單一,無(wú)法滿(mǎn)足用戶(hù)的多樣化需求17、人工智能中的智能搜索算法常用于解決復(fù)雜的優(yōu)化問(wèn)題。假設(shè)我們要在一個(gè)大規(guī)模的狀態(tài)空間中尋找最優(yōu)解,例如在物流配送中規(guī)劃最優(yōu)的路線。以下哪種智能搜索算法在處理這類(lèi)問(wèn)題時(shí)可能具有優(yōu)勢(shì)?()A.深度優(yōu)先搜索B.廣度優(yōu)先搜索C.模擬退火算法D.回溯算法18、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過(guò)隨機(jī)嘗試不同的動(dòng)作來(lái)學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒(méi)有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會(huì)最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對(duì)最優(yōu)的決策策略D.智能體在學(xué)習(xí)過(guò)程中會(huì)不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)19、在人工智能的圖像識(shí)別任務(wù)中,對(duì)抗樣本的存在對(duì)模型的安全性構(gòu)成威脅。假設(shè)一個(gè)圖像識(shí)別模型容易受到對(duì)抗樣本的攻擊,導(dǎo)致錯(cuò)誤的分類(lèi)結(jié)果。以下哪種方法在提高模型對(duì)對(duì)抗樣本的魯棒性方面最為有效?()A.數(shù)據(jù)增強(qiáng)B.模型正則化C.對(duì)抗訓(xùn)練D.以上方法綜合運(yùn)用20、在人工智能的發(fā)展中,倫理和社會(huì)問(wèn)題日益受到關(guān)注。例如,自動(dòng)駕駛汽車(chē)在面臨不可避免的事故時(shí),需要做出決策以最小化傷亡。這種情況下,以下哪種觀點(diǎn)是需要重點(diǎn)考慮的?()A.優(yōu)先保護(hù)乘客的生命安全B.隨機(jī)選擇保護(hù)對(duì)象C.按照預(yù)設(shè)的規(guī)則進(jìn)行決策,不考慮具體情況D.綜合考慮多種因素,如法律、道德和社會(huì)影響二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋隨機(jī)森林算法的特點(diǎn)。2、(本題5分)談?wù)勅斯ぶ悄茉谥悄苷衅盖肋x擇中的策略。3、(本題5分)說(shuō)明人工智能在環(huán)境影響評(píng)估和可持續(xù)發(fā)展目標(biāo)實(shí)現(xiàn)中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)使用人工智能的智能保險(xiǎn)理賠評(píng)估系統(tǒng),分析其如何判斷理賠合理性和提高處理效率。2、(本題5分)分析一個(gè)利用人工智能進(jìn)行書(shū)法作品評(píng)價(jià)的實(shí)例,討論其評(píng)價(jià)標(biāo)準(zhǔn)和客觀性。3、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能書(shū)法作品版權(quán)保護(hù)系統(tǒng),探討其如何識(shí)別書(shū)法作品的侵權(quán)行為。4、(本題5分)分析一個(gè)基于人工智能的醫(yī)療影像診斷系統(tǒng),探討其如何通過(guò)深度學(xué)習(xí)算法識(shí)別疾病特征,并評(píng)估其準(zhǔn)確性和可靠性。5、(本題5分)以某智能金融投資顧問(wèn)為例,探討人工智能在資產(chǎn)配置中的策略。四、操作題(本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論