版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年浙科版高一數(shù)學(xué)上冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、sin210°=()
A.
B.
C.-
D.-
2、若實數(shù)滿足的取值范圍為().A.B.C.D.3、【題文】已知則()A.B.C.D.4、某隧道入口豎立著“限高4.5米”的警示牌,是指示司機要想安全通過隧道,應(yīng)使車載貨物高度h滿足關(guān)系為()A.h<4.5B.h>4.5C.h≤4.5D.h≥4.55、下列各式中,值為的是()A.B.C.D.評卷人得分二、填空題(共9題,共18分)6、若a>b,則3a____3b,a+2____b+2,-5a____-5b.7、當(dāng)x∈[6,8]時,+=____.8、定義在R上的函數(shù)滿足則的值為.9、____;10、等差數(shù)列前12項和為354,在前12項中偶數(shù)項和與奇數(shù)項和之比為32︰27,則公差d=.11、【題文】已知直線(其中為非零實數(shù))與圓相交于兩點,O為坐標(biāo)原點,且為直角三角形,則的最小值為____.12、【題文】若a>0,b>0,且=1,則a+2b的最小值為________.13、【題文】已知偶函數(shù)f(x)滿足f(x+2)=xf(x)(x∈R),則f(1)=______.14、已知logab+logba=(a>b>1),則=______.評卷人得分三、證明題(共6題,共12分)15、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.16、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.17、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.
(1)求證:E為的中點;
(2)若CF=3,DE?EF=,求EF的長.18、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.19、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.20、已知ABCD四點共圓,AB與DC相交于點E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點,求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.評卷人得分四、作圖題(共4題,共8分)21、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.22、畫出計算1++++的程序框圖.23、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.
24、某潛艇為躲避反潛飛機的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機的偵查.試畫出潛艇整個過程的位移示意圖.評卷人得分五、計算題(共4題,共32分)25、(2005?蘭州校級自主招生)已知四邊形ABCD是正方形,且邊長為2,延長BC到E,使CE=-,并作正方形CEFG,(如圖),則△BDF的面積等于____.26、方程組的解為____.27、△ABC中,已知∠A、∠B、∠C的對邊長分別為a、b、c,∠C=120°,且2b=a+c,求2cot-cot的值.28、如圖,直角△ABC中,∠BAC=90°,AB=AC=15,AE為過點A的直線,BD⊥AE于D,CE⊥AE于E,CE=9,則DE=____.評卷人得分六、綜合題(共4題,共24分)29、如圖;⊙O的直徑AB=2,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,交BN于C.設(shè)AD=x,BC=y.
(1)求證:AM∥BN;
(2)求y關(guān)于x的關(guān)系式;
(3)求四邊形ABCD的面積S.30、如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(4;0);與y軸正半軸交于點E(0,4),邊長為4的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合;
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2;若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點P且同時與邊CD交于點Q.設(shè)點A的坐標(biāo)為(m,n)
①當(dāng)PO=PF時;分別求出點P和點Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;
②當(dāng)n=2時;若P為AB邊中點,請求出m的值;
(3)若點B在第(2)①中的PF所在直線l上運動;且正方形ABCD與拋物線有兩個交點,請直接寫出m的取值范圍.
31、如圖,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E為AB延長線上的一點,且EC交AD的延長線于F.
(1)設(shè)BE為x;DF為y,試用x的式子表示y.
(2)當(dāng)∠ACE=90°時,求此時x的值.32、(2012?鎮(zhèn)海區(qū)校級自主招生)如圖,在坐標(biāo)平面上,沿著兩條坐標(biāo)軸擺著三個相同的長方形,其長、寬分別為4、2,則通過A,B,C三點的拋物線對應(yīng)的函數(shù)關(guān)系式是____.參考答案一、選擇題(共5題,共10分)1、C【分析】
sin210°=sin(180°+30°)=-sin30°=-
故選C.
【解析】【答案】利用誘導(dǎo)公式可得sin210°=sin(180°+30°)=-sin30°;化簡得出結(jié)果.
2、A【分析】【解析】試題分析:令=t,即ty-x-4t+2=0,表示一條直線,又方程化為表示圓心為(1,1)半徑為1的圓,由題意直線與圓有公共點,∴圓心(1,1)到直線ty-x-4t+2=0的距離∴∴又t≠0,故即的取值范圍為,故選A考點:本題考查了直線與圓的位置關(guān)系【解析】【答案】A3、D【分析】【解析】本題考查較好的含義;運算及函數(shù)的定義域和值域的求法.
集合表示函數(shù)的定義域,其定義域為集合表示函數(shù)的值域,此二次函數(shù)滿足則故選D【解析】【答案】D4、C【分析】【解答】解:“限高4.5米”的意義為“h≤4.5”;故選:C.
【分析】理解“限高”的含義是“≤”即可得出.5、C【分析】【解答】選項A中,由于二倍角正弦公式可知,
選項B中,根據(jù)二倍角的余弦公式可知
選項C中,由于二倍角的余弦公式符合題意;
選項D中,利用同角平方關(guān)系可知結(jié)論為=1;故選C.
【分析】熟練的掌握二倍角公式和同角公式,能結(jié)合特殊角的三角函數(shù)值來求解表達(dá)式的值,先化簡后求解,這是三角求值的一般思路。,屬于基礎(chǔ)題。二、填空題(共9題,共18分)6、略
【分析】
∵a>b①;
不等式①兩邊同乘以3,可得3a>3b;
不等式①兩邊同加上2;可得。
a+2>b+2;
不等式①兩邊同乘以-5;不等式方向改變;
∴-5a<-5b;
故答案為:>;>;<;
【解析】【答案】根據(jù)不等式的性質(zhì)進(jìn)行求解;不等式兩邊同乘以一個正數(shù)或同加上一個數(shù)不等式方向不變,同乘以一個負(fù)數(shù)不等號方向要改變;
7、略
【分析】
當(dāng)x∈[6;8]時,x-6>0,x-8<0;
所以+=|x-6|+|x-8|=x-6+8-x=2;
故答案為:2
【解析】【答案】當(dāng)x∈[6;8]時,x-6>0,x-8<0,利用根式的性質(zhì)求出代數(shù)式的值.
8、略
【分析】試題分析:當(dāng)時,有將兩式相加得:令從而那么考點:1.分段函數(shù);2.函數(shù)的周期.【解析】【答案】19、略
【分析】【解析】試題分析:考點:三角函數(shù)的和角的正切公式【解析】【答案】10、略
【分析】【解析】
設(shè)偶數(shù)項和為32k,則奇數(shù)項和為27k,由32k+27k=59k=354可得k=6,故公差d=(32k-27k)/6=5k/6=5,故答案為:5.【解析】【答案】11、略
【分析】【解析】
試題分析:∵直線(其中為非零實數(shù))與圓相交于兩點,O為坐標(biāo)原點,且為直角三角形,∴∴圓心O(0,0)到直線的距離化為
∴
當(dāng)且僅當(dāng)取等號,∴的最小值為4.
考點:基本不等式.【解析】【答案】412、略
【分析】【解析】2a+4b+3=(2a+4b+3)·=[(2a+b)+3(b+1)]·=1+++3≥4+2所以a+2b≥【解析】【答案】13、略
【分析】【解析】略【解析】【答案】014、略
【分析】解:∵logab+logba=(a>b>1);
∴l(xiāng)ogab+=
設(shè)t=logab;
∵a>b>1;
∴0<t<1;
則條件等價為t+-=0;
即t2-t+1=0,2t2-5t+2=0;
解得t=2(舍)或t=
即logab=即b==
則=
故答案為:1
根據(jù)條件求出a,b的關(guān)系即可得到結(jié)論.
本題主要考查對數(shù)和指數(shù)冪的運算和化簡,根據(jù)一元二次方程求出a,b的關(guān)系是解決本題的關(guān)鍵.【解析】1三、證明題(共6題,共12分)15、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.16、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.17、略
【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE
OA=OE=>∠OAE=∠OEA
DE切圓O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
?OE∥AD
=>E為的中點.
(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圓O于E=>△FCE∽△FEA
∴,
∴
即DE?EF=AD?CF
DE?EF=;CF=3
∴AD=
OE∥AD=>=>=>8x2+7x-15=0
∴x1=1,x2=-(舍去)
∴EF2=FC?FA=3x(3+2)=15
∴EF=18、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.19、略
【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.20、略
【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過相似三角形來實現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;
由圖知:∠FDC是△ACD的一個外角;
則有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四邊形ABCD是圓的內(nèi)接四邊形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分別是∠AFB、∠AED的角平分線;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)連接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可證得∠NEX=∠MEX;
故FX、EX分別平分∠MFN與∠MEN.四、作圖題(共4題,共8分)21、略
【分析】【分析】作點A關(guān)于河CD的對稱點A′,當(dāng)水廠位置O在線段AA′上時,鋪設(shè)管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.
∵點A與點A′關(guān)于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費用為10000元.22、解:程序框圖如下:
【分析】【分析】根據(jù)題意,設(shè)計的程序框圖時需要分別設(shè)置一個累加變量S和一個計數(shù)變量i,以及判斷項數(shù)的判斷框.23、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.24、解:由題意作示意圖如下;
【分析】【分析】由題意作示意圖。五、計算題(共4題,共32分)25、略
【分析】【分析】根據(jù)正方形的性質(zhì)可知三角形BDC為等腰直角三角形,由正方形的邊長為2,表示出三角形BDC的面積,四邊形CDFE為直角梯形,上底下底分別為小大正方形的邊長,高為小正方形的邊長,利用梯形的面積公式表示出梯形CDFE的面積,而三角形BEF為直角三角形,直角邊為小正方形的邊長及大小邊長之和,利用三角形的面積公式表示出三角形BEF的面積,發(fā)現(xiàn)四邊形CDEF的面積與三角形EFB的面積相等,所求△BDF的面積等于三角形BDC的面積加上四邊形CDFE的面積減去△EFB的面積即為三角形BDC的面積,進(jìn)而得到所求的面積.【解析】【解答】解:∵四邊形ABCD是正方形;邊長為2;
∴BC=DC=2;且△BCD為等腰直角三角形;
∴△BDC的面積=BC?CD=×2×2=2;
又∵正方形CEFG;及正方形ABCD;
∴EF=CE;BC=CD;
由四邊形CDFE的面積是(EF+CD)?EC,△EFB的面積是(BC+CE)?EF;
∴四邊形CDFE的面積=△EFB的面積;
∴△BDF的面積=△BDC的面積+四邊形CDFE的面積-△EFB的面積=△BDC的面積=2.
故答案為:2.26、略
【分析】【分析】①+②得到一個關(guān)于x的方程,求出x,①-②得到一個關(guān)于y的方程,求出y即可.【解析】【解答】解:;
①+②得:2x=6;
∴x=3;
①-②得:2y=8;
∴y=4;
∴方程組的解是.27、略
【分析】【分析】作△ABC的內(nèi)切圓,分別切AB、BC、CA于D、E、F,圓心為O,連接OA、OB、OC、OD、OE、OF,求出AD、BE、CF,根據(jù)銳角三角函數(shù)求出r,代入求出即可.【解析】【解答】解:作△ABC的內(nèi)切圓;分別切AB;BC、CA于D、E、F,圓心為O;
連接OA;OB、OC、OD、OE、OF;
∴AD=AF;BD=BE,CF=CE;
c-AD+n-AD=a;
∴AD=;
同理:BE=,CE=;
在Rt△OCE中,cot60°=;
得r=;
所以.
答:2cot-cot的值是.28、略
【分析】【分析】要求DE,求AE,AD即可:求證△ABD≌△ACE,即可得AD=CE,直角△AEC中根據(jù)AE=得AE,根據(jù)DE=AE-AD即可解題.【解析】【解答】解:在直角△AEC中;∠AEC=90°;
AC=15,CE=9,則AE==12;
∵∠BAD+∠CAD=90°;∠ABD+∠BAD=90°;
∴∠ABD=∠CAE;
∴
△ABD≌△CAE;
∴AD=CE=9;
∴DE=AE-AD=AE-AD=3.
故答案為3.六、綜合題(共4題,共24分)29、略
【分析】【分析】(1)由AB是直徑;AM;BN是切線,得到AM⊥AB,BN⊥AB,根據(jù)垂直于同一條直線的兩直線平行即可得到結(jié)論;
(2)過點D作DF⊥BC于F;則AB∥DF,由(1)AM∥BN,得到四邊形ABFD為矩形,于是得到DF=AB=2,BF=AD=x,根據(jù)切線長定理得DE=DA=x,CE=CB=y.根據(jù)勾股定理即可得到結(jié)果;
(3)根據(jù)梯形的面積公式即可得到結(jié)論.【解析】【解答】(1)證明:∵AB是直徑;AM;BN是切線;
∴AM⊥AB;BN⊥AB;
∴AM∥BN;
(2)解:過點D作DF⊥BC于F;則AB∥DF;
由(1)AM∥BN;
∴四邊形ABFD為矩形;
∴DF=AB=2;BF=AD=x;
∵DE;DA;CE、CB都是切線;
∴根據(jù)切線長定理;得DE=DA=x,CE=CB=y.
在Rt△DFC中;DF=2,DC=DE+CE=x+y,CF=BC-BF=y-x;
∴(x+y)2=22+(y-x)2;
化簡,得.
(3)解:由(1)、(2)得,四邊形的面積;
即.30、略
【分析】【分析】(1)已知拋物線的對稱軸是y軸;頂點是(0,4),經(jīng)過點(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)①過點P作PG⊥x軸于點G;根據(jù)三線合一定理可以求得G的坐標(biāo),則P點的橫坐標(biāo)可以求得,把P的橫坐標(biāo)代入拋物線的解析式,即可求得縱坐標(biāo),得到P的坐標(biāo),再根據(jù)正方形的邊長是4,即可求得Q的縱坐標(biāo),代入拋物線的解析式即可求得Q的坐標(biāo),然后利用待定系數(shù)法即可求得直線PF的解析式;
②已知n=2;即A的縱坐標(biāo)是2,則P的縱坐標(biāo)一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標(biāo),根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標(biāo),從而求得m的值;
(3)假設(shè)B在M點時,C在拋物線上或假設(shè)當(dāng)B點在N點時,D點同時在拋物線上時,求得兩個臨界點,當(dāng)B在MP和FN之間移動時,拋物線與正方形有兩個交點.【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點E(0;4),F(xiàn)(4,0)
,解得;
∴y=-x2+4;
(2)①過點P作PG⊥x軸于點G;
∵PO=PF∴OG=FG
∵F(4;0)∴OF=4
∴OG=OF=×4=2;即點P的橫坐標(biāo)為2
∵點P在拋物線上。
∴y=-×22+4=3;即P點的縱坐標(biāo)為3
∴P(2;3)
∵點P的縱坐標(biāo)為3;正方形ABCD邊長是4,∴點Q的縱坐標(biāo)為-1
∵點Q在拋物線上,∴-1=-x2+4
∴x1=2,x2=-2(不符題意;舍去)
∴Q(2;-1)
設(shè)直線PF的解析式是y=kx+b;
根據(jù)題意得:;
解得:,
則直線的解析式是:y=-x+6;
②當(dāng)n=2時;則點P的縱坐標(biāo)為2
∵P在拋物線上,∴2=-x2+4
∴x1=2,x2=-2
∴P的坐標(biāo)為(2,2)或(-2;2)
∵P為AB中點∴AP=2
∴A的坐標(biāo)為(2-2,2)或(-2-2;2)
∴m的值為2-2或-2-2;
(3)假設(shè)B在M點時;C在拋物線上,A的橫坐標(biāo)是m,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版教育機構(gòu)校園辦公電腦采購服務(wù)協(xié)議3篇
- 二零二五版人工智能產(chǎn)業(yè)股權(quán)質(zhì)押合作協(xié)議3篇
- 二零二五年度幼兒園全面托管承包經(jīng)營協(xié)議4篇
- 2025年度獼猴桃種植基地土地租賃與農(nóng)產(chǎn)品加工合作協(xié)議4篇
- 2025年度樓頂廣告牌廣告位租賃期限及續(xù)約合同范本4篇
- 2025年度個人汽車租賃抵押借款合同定制3篇
- 2025年度綠色建筑門窗安裝工程總承包服務(wù)合同范本4篇
- 2025年度模具材料采購及加工合作協(xié)議4篇
- 二零二五年度商務(wù)咨詢代簽合同授權(quán)委托書4篇
- 二零二五年度冷鏈物流運輸與信息化管理合同4篇
- 中國的世界遺產(chǎn)智慧樹知到期末考試答案2024年
- 2023年貴州省銅仁市中考數(shù)學(xué)真題試題含解析
- 世界衛(wèi)生組織生存質(zhì)量測量表(WHOQOL-BREF)
- 《葉圣陶先生二三事》第1第2課時示范公開課教學(xué)PPT課件【統(tǒng)編人教版七年級語文下冊】
- 某送電線路安全健康環(huán)境與文明施工監(jiān)理細(xì)則
- GB/T 28885-2012燃?xì)夥?wù)導(dǎo)則
- PEP-3心理教育量表-評估報告
- 控制性詳細(xì)規(guī)劃編制項目競爭性磋商招標(biāo)文件評標(biāo)辦法、采購需求和技術(shù)參數(shù)
- 《增值稅及附加稅費申報表(小規(guī)模納稅人適用)》 及其附列資料-江蘇稅務(wù)
- 中南民族大學(xué)中文成績單
- 危大工程安全管理措施方案
評論
0/150
提交評論