版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省莆田一中等三校2023屆高三數(shù)學(xué)試題3月11日第2周測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓,直線與直線相交于點(diǎn),且點(diǎn)在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.2.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.3.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.4.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”5.已知,,,則,,的大小關(guān)系為()A. B. C. D.6.設(shè),滿足約束條件,則的最大值是()A. B. C. D.7.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.已知集合,,,則的子集共有()A.個(gè) B.個(gè) C.個(gè) D.個(gè)10.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.711.已知向量,,若,則與夾角的余弦值為()A. B. C. D.12.在中,,分別為,的中點(diǎn),為上的任一點(diǎn),實(shí)數(shù),滿足,設(shè)、、、的面積分別為、、、,記(),則取到最大值時(shí),的值為()A.-1 B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)直線過(guò)雙曲線的一個(gè)焦點(diǎn),且與的一條對(duì)稱(chēng)軸垂直,與交于兩點(diǎn),為的實(shí)軸長(zhǎng)的2倍,則雙曲線的離心率為.14.雙曲線的左焦點(diǎn)為,點(diǎn),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且周長(zhǎng)的最小值為8,則雙曲線的實(shí)軸長(zhǎng)為_(kāi)_______,離心率為_(kāi)_______.15.某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,則該市的任意位申請(qǐng)人中,恰好有人申請(qǐng)小區(qū)房源的概率是______.(用數(shù)字作答)16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大?。唬?)若,求邊上的高.18.(12分)已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,.(1)求;(2)若,,求,.19.(12分)一張邊長(zhǎng)為的正方形薄鋁板(圖甲),點(diǎn),分別在,上,且(單位:).現(xiàn)將該薄鋁板沿裁開(kāi),再將沿折疊,沿折疊,使,重合,且重合于點(diǎn),制作成一個(gè)無(wú)蓋的三棱錐形容器(圖乙),記該容器的容積為(單位:),(注:薄鋁板的厚度忽略不計(jì))(1)若裁開(kāi)的三角形薄鋁板恰好是該容器的蓋,求,的值;(2)試確定的值,使得無(wú)蓋三棱錐容器的容積最大.20.(12分)隨著小汽車(chē)的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過(guò)四個(gè)科目的考試,其中科目二為場(chǎng)地考試.在一次報(bào)名中,每個(gè)學(xué)員有5次參加科目二考試的機(jī)會(huì)(這5次考試機(jī)會(huì)中任何一次通過(guò)考試,就算順利通過(guò),即進(jìn)入下一科目考試;若5次都沒(méi)有通過(guò),則需重新報(bào)名),其中前2次參加科目二考試免費(fèi),若前2次都沒(méi)有通過(guò),則以后每次參加科目二考試都需要交200元的補(bǔ)考費(fèi).某駕校對(duì)以往2000個(gè)學(xué)員第1次參加科目二考試進(jìn)行了統(tǒng)計(jì),得到下表:考試情況男學(xué)員女學(xué)員第1次考科目二人數(shù)1200800第1次通過(guò)科目二人數(shù)960600第1次未通過(guò)科目二人數(shù)240200若以上表得到的男、女學(xué)員第1次通過(guò)科目二考試的頻率分別作為此駕校男、女學(xué)員每次通過(guò)科目二考試的概率,且每人每次是否通過(guò)科目二考試相互獨(dú)立.現(xiàn)有一對(duì)夫妻同時(shí)在此駕校報(bào)名參加了駕駛證考試,在本次報(bào)名中,若這對(duì)夫妻參加科目二考試的原則為:通過(guò)科目二考試或者用完所有機(jī)會(huì)為止.(1)求這對(duì)夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;(2)若這對(duì)夫妻前2次參加科目二考試均沒(méi)有通過(guò),記這對(duì)夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元,求的分布列與數(shù)學(xué)期望.21.(12分)已知函數(shù),且.(1)若,求的最小值,并求此時(shí)的值;(2)若,求證:.22.(10分)P是圓上的動(dòng)點(diǎn),P點(diǎn)在x軸上的射影是D,點(diǎn)M滿足.(1)求動(dòng)點(diǎn)M的軌跡C的方程,并說(shuō)明軌跡是什么圖形;(2)過(guò)點(diǎn)的直線l與動(dòng)點(diǎn)M的軌跡C交于不同的兩點(diǎn)A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點(diǎn)E的軌跡方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
先求得橢圓焦點(diǎn)坐標(biāo),判斷出直線過(guò)橢圓的焦點(diǎn).然后判斷出,判斷出點(diǎn)的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡(jiǎn)后求得離心率的取值范圍.【詳解】設(shè)是橢圓的焦點(diǎn),所以.直線過(guò)點(diǎn),直線過(guò)點(diǎn),由于,所以,所以點(diǎn)的軌跡是以為直徑的圓.由于點(diǎn)在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點(diǎn)睛】本小題主要考查直線與直線的位置關(guān)系,考查動(dòng)點(diǎn)軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.2.B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時(shí),,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點(diǎn)睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.3.A【解析】
根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.4.B【解析】
通過(guò)與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.5.D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.6.D【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,由目標(biāo)函數(shù)的幾何意義,通過(guò)平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內(nèi)平移當(dāng)過(guò)點(diǎn)時(shí),取得最大值.由得:,故選:D【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法,屬于基礎(chǔ)題.7.D【解析】
如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)?,?由正弦定理可得,故,又因?yàn)椋?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.8.D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫(huà)出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.9.B【解析】
根據(jù)集合中的元素,可得集合,然后根據(jù)交集的概念,可得,最后根據(jù)子集的概念,利用計(jì)算,可得結(jié)果.【詳解】由題可知:,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以集合則所以的子集共有故選:B【點(diǎn)睛】本題考查集合的運(yùn)算以及集合子集個(gè)數(shù)的計(jì)算,當(dāng)集合中有元素時(shí),集合子集的個(gè)數(shù)為,真子集個(gè)數(shù)為,非空子集為,非空真子集為,屬基礎(chǔ)題.10.C【解析】
根據(jù)程序框圖程序運(yùn)算即可得.【詳解】依程序運(yùn)算可得:,故選:C【點(diǎn)睛】本題主要考查了程序框圖的計(jì)算,解題的關(guān)鍵是理解程序框圖運(yùn)行的過(guò)程.11.B【解析】
直接利用向量的坐標(biāo)運(yùn)算得到向量的坐標(biāo),利用求得參數(shù)m,再用計(jì)算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、向量數(shù)量積的應(yīng)用,考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想.12.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結(jié)合基本不等式求最值,得到當(dāng)取到最大值時(shí),為的中點(diǎn),再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結(jié)果.【詳解】如圖所示:因?yàn)槭恰鞯闹形痪€,所以到的距離等于△的邊上高的一半,所以,由此可得,當(dāng)且僅當(dāng)時(shí),即為的中點(diǎn)時(shí),等號(hào)成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點(diǎn)睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應(yīng)用,考查了基本不等式求最值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
不妨設(shè)雙曲線,焦點(diǎn),令,由的長(zhǎng)為實(shí)軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點(diǎn),對(duì)稱(chēng)軸,由題設(shè)知,因?yàn)榈拈L(zhǎng)為實(shí)軸的二倍,,,,故答案為.【點(diǎn)睛】本題主要考查利用雙曲線的簡(jiǎn)單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問(wèn)題應(yīng)先將用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.14.22【解析】
設(shè)雙曲線的右焦點(diǎn)為,根據(jù)周長(zhǎng)為,計(jì)算得到答案.【詳解】設(shè)雙曲線的右焦點(diǎn)為.周長(zhǎng)為:.當(dāng)共線時(shí)等號(hào)成立,故,即實(shí)軸長(zhǎng)為,.故答案為:;.【點(diǎn)睛】本題考查雙曲線周長(zhǎng)的最值問(wèn)題,離心率,實(shí)軸長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.15.【解析】
基本事件總數(shù),恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù),由此能求出該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個(gè)小區(qū),每位申請(qǐng)人只能申請(qǐng)其中一個(gè)小區(qū)的房子,申請(qǐng)其中任意一個(gè)小區(qū)的房子是等可能的,該市的任意5位申請(qǐng)人中,基本事件總數(shù),該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源包含的基本事件個(gè)數(shù):,該市的任意5位申請(qǐng)人中,恰好有2人申請(qǐng)小區(qū)房源的概率是.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.16.【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點(diǎn)睛】本題考查古典概型的概率的計(jì)算,考查學(xué)生分析問(wèn)題的能力,難度容易.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)【解析】
(1)利用正弦定理將邊化成角,可得,展開(kāi)并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【詳解】(1)由題意,由正弦定理得.因?yàn)?,所以,所以,展開(kāi)得,整理得.因?yàn)?,所以,故,?(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【點(diǎn)睛】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.18.(1);(2),或,.【解析】
(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因?yàn)椋?,代入上式并化?jiǎn)得.由于,所以.又,故.(2)因?yàn)椋?,由余弦定理得?所以.而,所以,為一元二次方程的兩根.所以,或,.【點(diǎn)睛】本題考查了正弦定理,余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19.(1),;(2)當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【解析】
(1)由已知求得,求得三角形的面積,再由已知得到平面,代入三棱錐體積公式求的值;(2)由題意知,在等腰三角形中,,則,,寫(xiě)出三角形面積,求其平方導(dǎo)數(shù)的最值,則答案可求.【詳解】解:(1)由題意,為等腰直角三角形,又,,恰好是該零件的蓋,,則,由圖甲知,,,則在圖乙中,,,,又,平面,平面,;(2)由題意知,在等腰三角形中,,則,,.令,,,.可得:當(dāng)時(shí),,當(dāng),時(shí),,當(dāng)時(shí),有最大值.由(1)知,平面,該三棱錐容積的最大值為,且.當(dāng)時(shí),取得最大值,無(wú)蓋三棱錐容器的容積最大.答:當(dāng)值為時(shí),無(wú)蓋三棱錐容器的容積最大.【點(diǎn)睛】本題考查棱錐體積的求法,考查空間想象能力與思維能力,訓(xùn)練了利用導(dǎo)數(shù)求最值,屬于中檔題.20.(1);(2)見(jiàn)解析.【解析】
事件表示男學(xué)員在第次考科目二通過(guò),事件表示女學(xué)員在第次考科目二通過(guò)(其中)(1)這對(duì)夫妻是否通過(guò)科目二考試相互獨(dú)立,利用獨(dú)立事件乘法公式即可求得;(2)補(bǔ)考費(fèi)用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應(yīng)的概率,進(jìn)而可求X的數(shù)學(xué)期望.【詳解】事件表示男學(xué)員在第次考科目二通過(guò),事件表示女學(xué)員在第次考科目二通過(guò)(其中).(1)事件表示這對(duì)夫妻考科目二都不需要交補(bǔ)考費(fèi)..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:4006008
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中班社會(huì)活動(dòng)紙的由來(lái)
- 2025公民類(lèi)贈(zèng)與合同模板參考
- 幼兒園健康活動(dòng)培訓(xùn)
- 學(xué)校班主任管作計(jì)劃
- 檢討書(shū)通知失誤檢討書(shū)
- 2025浙江省商品交易市場(chǎng)商位租賃經(jīng)營(yíng)合同
- 2025關(guān)于合同執(zhí)行通知書(shū)的模板
- 輔導(dǎo)教師與學(xué)生交流機(jī)制計(jì)劃
- 傳媒行業(yè)銷(xiāo)售人員工作總結(jié)
- 2025運(yùn)輸合同委托書(shū)范文
- 上海紐約大學(xué)自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競(jìng)賽理論題庫(kù)(含答案)
- ?;钒踩僮饕?guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險(xiǎn)源辨識(shí)及分析
- 中海地產(chǎn)設(shè)計(jì)管理程序
- 簡(jiǎn)譜視唱15942
- 《城鎮(zhèn)燃?xì)庠O(shè)施運(yùn)行、維護(hù)和搶修安全技術(shù)規(guī)程》(CJJ51-2006)
- 項(xiàng)目付款審核流程(visio流程圖)
評(píng)論
0/150
提交評(píng)論