下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁廈門軟件職業(yè)技術(shù)學(xué)院
《大數(shù)據(jù)分析計(jì)算》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、大數(shù)據(jù)安全防護(hù)措施有很多種,以下關(guān)于大數(shù)據(jù)安全防護(hù)措施的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)安全防護(hù)措施包括數(shù)據(jù)加密、訪問控制、數(shù)據(jù)備份等B.大數(shù)據(jù)安全防護(hù)措施需要根據(jù)數(shù)據(jù)的敏感程度和價(jià)值進(jìn)行分級(jí)保護(hù)C.大數(shù)據(jù)安全防護(hù)措施只需要關(guān)注數(shù)據(jù)存儲(chǔ)和傳輸?shù)陌踩恍枰P(guān)注數(shù)據(jù)處理的安全D.大數(shù)據(jù)安全防護(hù)措施需要建立完善的安全管理體系和應(yīng)急預(yù)案2、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)的實(shí)時(shí)處理需求日益增加。假設(shè)一個(gè)金融交易系統(tǒng)需要實(shí)時(shí)監(jiān)控交易數(shù)據(jù),及時(shí)發(fā)現(xiàn)異常交易行為。以下哪種技術(shù)或框架最適合實(shí)現(xiàn)這種實(shí)時(shí)數(shù)據(jù)處理?()A.StormB.HBaseC.HiveD.MapReduce3、在大數(shù)據(jù)應(yīng)用中,推薦系統(tǒng)是常見的一種。以下關(guān)于協(xié)同過濾推薦算法和基于內(nèi)容的推薦算法的比較,哪一項(xiàng)是不正確的?()A.協(xié)同過濾推薦算法依賴用戶的行為數(shù)據(jù),基于內(nèi)容的推薦算法依賴物品的特征B.協(xié)同過濾推薦算法容易受到數(shù)據(jù)稀疏性的影響,基于內(nèi)容的推薦算法則相對(duì)較少C.基于內(nèi)容的推薦算法能夠?yàn)樾掠脩籼峁┯行У耐扑],協(xié)同過濾推薦算法對(duì)新用戶存在冷啟動(dòng)問題D.協(xié)同過濾推薦算法的推薦結(jié)果多樣性通常比基于內(nèi)容的推薦算法好4、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)隱私保護(hù)至關(guān)重要。以下哪種技術(shù)或方法常用于保護(hù)數(shù)據(jù)隱私?()A.數(shù)據(jù)加密B.數(shù)據(jù)匿名化C.訪問控制D.以上都是5、大數(shù)據(jù)的處理通常需要分布式計(jì)算框架來提高效率。假設(shè)有一個(gè)需要對(duì)海量文本數(shù)據(jù)進(jìn)行詞頻統(tǒng)計(jì)的任務(wù),數(shù)據(jù)量達(dá)到數(shù)百TB。以下哪種分布式計(jì)算框架最適合處理這種大規(guī)模的數(shù)據(jù)處理任務(wù)?()A.HadoopMapReduceB.SparkC.FlinkD.Storm6、在選擇大數(shù)據(jù)處理框架時(shí),需要考慮多個(gè)因素。以下哪一項(xiàng)不是選擇框架時(shí)應(yīng)考慮的關(guān)鍵因素?()A.數(shù)據(jù)規(guī)模B.計(jì)算復(fù)雜度C.開發(fā)成本D.框架的流行程度7、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)倉庫和數(shù)據(jù)集市有不同的應(yīng)用場(chǎng)景。如果一個(gè)企業(yè)需要為不同部門提供定制化的數(shù)據(jù)服務(wù),更適合采用哪種技術(shù)?()A.數(shù)據(jù)倉庫B.數(shù)據(jù)集市C.兩者都可以,效果相同D.兩者都不適用8、當(dāng)對(duì)大數(shù)據(jù)進(jìn)行預(yù)處理,去除噪聲和異常值時(shí),以下哪種方法經(jīng)常被使用?()A.數(shù)據(jù)歸一化B.主成分分析C.異常檢測(cè)算法D.數(shù)據(jù)標(biāo)準(zhǔn)化9、在大數(shù)據(jù)應(yīng)用中,用戶畫像的構(gòu)建是非常重要的。假設(shè)有一個(gè)電商平臺(tái),需要為用戶構(gòu)建畫像,以便進(jìn)行精準(zhǔn)營銷。以下哪種數(shù)據(jù)可以用于構(gòu)建用戶畫像?()A.用戶的購買記錄B.用戶的瀏覽行為C.用戶的評(píng)價(jià)信息D.Alloftheabove(以上皆是)10、當(dāng)處理海量的社交媒體數(shù)據(jù)時(shí),情感分析是一個(gè)常見的任務(wù)。假設(shè)我們有大量的微博文本數(shù)據(jù),需要判斷每條微博所表達(dá)的情感是積極、消極還是中性。以下哪種方法常用于社交媒體的情感分析?()A.基于詞典的方法,根據(jù)預(yù)定義的情感詞庫進(jìn)行判斷B.基于機(jī)器學(xué)習(xí)的方法,使用分類算法進(jìn)行訓(xùn)練和預(yù)測(cè)C.基于深度學(xué)習(xí)的方法,如使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行情感分類D.以上方法都經(jīng)常被使用,具體取決于數(shù)據(jù)特點(diǎn)和任務(wù)需求11、在大數(shù)據(jù)分析中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵的步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在一些缺失值和錯(cuò)誤數(shù)據(jù)。以下關(guān)于數(shù)據(jù)清洗方法的選擇,正確的是:()A.對(duì)于缺失值,直接刪除包含缺失值的記錄,以保證數(shù)據(jù)的完整性B.對(duì)于錯(cuò)誤數(shù)據(jù),通過手動(dòng)檢查和修正來確保數(shù)據(jù)的準(zhǔn)確性C.利用統(tǒng)計(jì)方法填充缺失值,并使用機(jī)器學(xué)習(xí)算法檢測(cè)和糾正錯(cuò)誤數(shù)據(jù)D.忽略所有的缺失值和錯(cuò)誤數(shù)據(jù),直接進(jìn)行后續(xù)的分析12、大數(shù)據(jù)分析平臺(tái)有很多種,以下關(guān)于大數(shù)據(jù)分析平臺(tái)的描述中,錯(cuò)誤的是()。A.大數(shù)據(jù)分析平臺(tái)可以提供數(shù)據(jù)存儲(chǔ)、處理、分析等功能B.大數(shù)據(jù)分析平臺(tái)可以支持多種數(shù)據(jù)分析算法和工具C.大數(shù)據(jù)分析平臺(tái)只適用于大規(guī)模企業(yè),不適用于中小企業(yè)D.大數(shù)據(jù)分析平臺(tái)需要具備高可用性和可擴(kuò)展性13、隨著大數(shù)據(jù)應(yīng)用的普及,數(shù)據(jù)可視化工具也不斷發(fā)展。以下關(guān)于數(shù)據(jù)可視化工具的選擇因素,哪項(xiàng)說法不準(zhǔn)確?()A.應(yīng)考慮工具對(duì)不同數(shù)據(jù)源的支持能力,以便能夠整合多種數(shù)據(jù)進(jìn)行可視化分析B.工具的交互性和用戶體驗(yàn)對(duì)于用戶深入探索數(shù)據(jù)和發(fā)現(xiàn)洞察非常重要C.可視化工具的價(jià)格是選擇的唯一決定性因素,應(yīng)選擇價(jià)格最低的工具D.工具的可擴(kuò)展性和與其他系統(tǒng)的集成能力也是需要考慮的因素之一14、在大數(shù)據(jù)應(yīng)用中,輿情分析是一個(gè)重要領(lǐng)域。如果要快速了解公眾對(duì)某個(gè)事件的態(tài)度傾向,以下哪種技術(shù)可以提供幫助?()A.文本分類B.情感分析C.主題模型D.以上都是15、在大數(shù)據(jù)的存儲(chǔ)中,為了提高數(shù)據(jù)的可靠性和可用性,常常采用冗余存儲(chǔ)的方式。假設(shè)一個(gè)關(guān)鍵的大數(shù)據(jù)集需要確保在硬件故障時(shí)數(shù)據(jù)不丟失。以下哪種冗余存儲(chǔ)策略最適合這種需求?()A.鏡像存儲(chǔ)B.奇偶校驗(yàn)存儲(chǔ)C.糾錯(cuò)編碼存儲(chǔ)D.以上策略結(jié)合使用16、隨著大數(shù)據(jù)技術(shù)的不斷發(fā)展,數(shù)據(jù)存儲(chǔ)和處理面臨諸多挑戰(zhàn)。在處理海量的非結(jié)構(gòu)化數(shù)據(jù)時(shí),以下哪種技術(shù)通常被用于高效存儲(chǔ)和快速檢索?()A.關(guān)系型數(shù)據(jù)庫B.分布式文件系統(tǒng)C.數(shù)據(jù)倉庫D.內(nèi)存數(shù)據(jù)庫17、在大數(shù)據(jù)存儲(chǔ)中,NoSQL數(shù)據(jù)庫具有一些獨(dú)特的優(yōu)勢(shì)。以下關(guān)于NoSQL數(shù)據(jù)庫的描述,哪一個(gè)是不準(zhǔn)確的?()A.NoSQL數(shù)據(jù)庫通常具有良好的擴(kuò)展性,能夠輕松應(yīng)對(duì)數(shù)據(jù)量的增長B.NoSQL數(shù)據(jù)庫支持復(fù)雜的關(guān)系查詢,性能優(yōu)于傳統(tǒng)關(guān)系型數(shù)據(jù)庫C.NoSQL數(shù)據(jù)庫的數(shù)據(jù)模型靈活多樣,適用于不同類型的數(shù)據(jù)存儲(chǔ)需求D.NoSQL數(shù)據(jù)庫在處理大規(guī)模非結(jié)構(gòu)化和半結(jié)構(gòu)化數(shù)據(jù)時(shí)表現(xiàn)出色18、在大數(shù)據(jù)時(shí)代,數(shù)據(jù)隱私保護(hù)面臨諸多挑戰(zhàn)。假設(shè)一個(gè)公司需要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)又要保護(hù)員工的隱私。以下哪種技術(shù)可以在不泄露原始數(shù)據(jù)的情況下進(jìn)行數(shù)據(jù)分析?()A.同態(tài)加密B.哈希函數(shù)C.數(shù)字簽名D.數(shù)據(jù)脫敏19、大數(shù)據(jù)分析中的機(jī)器學(xué)習(xí)算法能夠幫助發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和規(guī)律。以下關(guān)于機(jī)器學(xué)習(xí)在大數(shù)據(jù)中的應(yīng)用,哪項(xiàng)描述不準(zhǔn)確?()A.可以使用監(jiān)督學(xué)習(xí)算法進(jìn)行分類和預(yù)測(cè),如預(yù)測(cè)客戶流失、商品銷量等B.無監(jiān)督學(xué)習(xí)算法可用于數(shù)據(jù)聚類、異常檢測(cè)等任務(wù)C.強(qiáng)化學(xué)習(xí)在大數(shù)據(jù)分析中的應(yīng)用較少,因?yàn)槠鋵?duì)數(shù)據(jù)量和計(jì)算資源要求過高D.深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò),在圖像、語音等大數(shù)據(jù)處理中表現(xiàn)出色20、在大數(shù)據(jù)環(huán)境下,數(shù)據(jù)質(zhì)量問題可能導(dǎo)致錯(cuò)誤的分析結(jié)果。假設(shè)一個(gè)數(shù)據(jù)集存在大量噪聲數(shù)據(jù)。以下哪種方法可以減少噪聲的影響?()A.直接刪除含有噪聲的數(shù)據(jù)點(diǎn)B.采用平滑技術(shù)對(duì)噪聲數(shù)據(jù)進(jìn)行處理C.忽略噪聲數(shù)據(jù),只關(guān)注主要的數(shù)據(jù)趨勢(shì)D.增加更多的數(shù)據(jù)來稀釋噪聲的影響21、在大數(shù)據(jù)的數(shù)據(jù)清洗中,處理重復(fù)數(shù)據(jù)的方法有多種。假設(shè)我們有一個(gè)大規(guī)模的數(shù)據(jù)集,存在大量重復(fù)記錄,以下哪種方法可以高效地去除重復(fù)數(shù)據(jù)?()A.排序后逐個(gè)比較去除B.使用哈希表進(jìn)行快速判斷和去除C.隨機(jī)選擇一部分?jǐn)?shù)據(jù)保留,其余刪除D.對(duì)重復(fù)數(shù)據(jù)進(jìn)行合并處理22、對(duì)于一個(gè)需要處理大量地理空間數(shù)據(jù)的交通大數(shù)據(jù)系統(tǒng),以下哪種技術(shù)能夠提供有效的位置服務(wù)和路徑規(guī)劃?()A.地理信息系統(tǒng)B.路徑規(guī)劃算法C.空間索引D.以上都是23、在大數(shù)據(jù)分析中,異常檢測(cè)是一項(xiàng)重要任務(wù)。如果數(shù)據(jù)分布呈現(xiàn)明顯的正態(tài)分布,以下哪種方法常用于檢測(cè)異常值?()A.基于距離的方法B.基于密度的方法C.3σ原則D.以上都不是24、在大數(shù)據(jù)的背景下,數(shù)據(jù)倉庫的設(shè)計(jì)需要適應(yīng)新的需求。假設(shè)一個(gè)擁有多個(gè)業(yè)務(wù)部門的大型企業(yè),需要構(gòu)建一個(gè)統(tǒng)一的數(shù)據(jù)倉庫來整合來自不同系統(tǒng)的數(shù)據(jù)。以下哪種數(shù)據(jù)倉庫架構(gòu)最適合這種復(fù)雜的企業(yè)環(huán)境?()A.集中式數(shù)據(jù)倉庫B.分布式數(shù)據(jù)倉庫C.數(shù)據(jù)集市D.混合式數(shù)據(jù)倉庫25、在大數(shù)據(jù)分析中,常常需要對(duì)海量文本數(shù)據(jù)進(jìn)行分類。假設(shè)有一個(gè)包含大量新聞文章的數(shù)據(jù)集,需要將其分為不同的類別,如政治、經(jīng)濟(jì)、體育等。以下哪種機(jī)器學(xué)習(xí)算法在文本分類任務(wù)中表現(xiàn)較好?()A.樸素貝葉斯B.邏輯回歸C.決策樹D.隨機(jī)森林26、在大數(shù)據(jù)分析中,數(shù)據(jù)血緣關(guān)系的追蹤至關(guān)重要。以下關(guān)于數(shù)據(jù)血緣的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)血緣能夠清晰展示數(shù)據(jù)的來源、處理過程和流向,有助于理解數(shù)據(jù)的產(chǎn)生和演變B.通過數(shù)據(jù)血緣,可以快速定位數(shù)據(jù)質(zhì)量問題的根源,便于進(jìn)行問題排查和修復(fù)C.數(shù)據(jù)血緣只在數(shù)據(jù)倉庫和數(shù)據(jù)處理流程中重要,對(duì)于實(shí)時(shí)數(shù)據(jù)分析系統(tǒng)意義不大D.建立和維護(hù)數(shù)據(jù)血緣關(guān)系需要在數(shù)據(jù)處理的各個(gè)環(huán)節(jié)進(jìn)行記錄和跟蹤27、在大數(shù)據(jù)處理中,常常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和特征工程。假設(shè)有一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,需要將文本轉(zhuǎn)換為數(shù)值特征以便進(jìn)行機(jī)器學(xué)習(xí)模型的訓(xùn)練。以下哪種方法常用于文本數(shù)據(jù)的特征提???()A.TF-IDF(TermFrequency-InverseDocumentFrequency)B.主成分分析(PCA)C.獨(dú)立成分分析(ICA)D.因子分析28、在利用大數(shù)據(jù)進(jìn)行客戶細(xì)分時(shí),以下哪種方法可以自動(dòng)確定細(xì)分的類別數(shù)量?()A.K-Means聚類B.層次聚類C.密度聚類D.以上都不行29、大數(shù)據(jù)的分析結(jié)果需要進(jìn)行驗(yàn)證和評(píng)估。假設(shè)一個(gè)大數(shù)據(jù)分析項(xiàng)目得出了關(guān)于市場(chǎng)趨勢(shì)的預(yù)測(cè)。以下哪種方法最能有效地驗(yàn)證這個(gè)預(yù)測(cè)的準(zhǔn)確性?()A.與歷史數(shù)據(jù)進(jìn)行對(duì)比B.專家評(píng)估C.模擬實(shí)驗(yàn)D.以上方法結(jié)合使用30、在交通領(lǐng)域,大數(shù)據(jù)的應(yīng)用日益廣泛。以下關(guān)于大數(shù)據(jù)在交通領(lǐng)域應(yīng)用的描述,不正確的是()A.可以通過分析交通流量數(shù)據(jù)優(yōu)化信號(hào)燈控制,緩解交通擁堵B.能夠?qū)崟r(shí)監(jiān)測(cè)車輛的運(yùn)行狀態(tài),提高交通安全水平C.可以用于規(guī)劃城市的交通基礎(chǔ)設(shè)施,如道路和停車場(chǎng)的建設(shè)D.大數(shù)據(jù)在交通領(lǐng)域的應(yīng)用主要集中在城市交通,對(duì)長途運(yùn)輸?shù)淖饔糜邢薅?、編程題(本大題共5個(gè)小題,共25分)1、(本題5分)使用SparkSQL,對(duì)一個(gè)包含用戶評(píng)價(jià)文本數(shù)據(jù)的數(shù)據(jù)集進(jìn)行文本挖掘,提取關(guān)鍵詞和主題。2、(本題5分)利用Spark框架,讀取一個(gè)包含車輛行駛數(shù)據(jù)的文件,分析不同車型在不同道路條件下的油耗情況。3、(本題5分)使用Spark框架,讀取一個(gè)包含用戶購買記錄的數(shù)據(jù)集,分析每個(gè)用戶的消費(fèi)習(xí)慣,計(jì)算每個(gè)用戶的平均消費(fèi)金額和購買商品的種類數(shù)量。4、(本題5分)用Java編寫一個(gè)程序,處理一個(gè)包含航空公司航班預(yù)訂數(shù)據(jù)的大型數(shù)據(jù)集。找出預(yù)訂人數(shù)最多的5條航線,并計(jì)算這些航線的總預(yù)訂人數(shù)。5、(本題5分)利用Python的數(shù)據(jù)分析庫,讀取一個(gè)包含電影評(píng)論情感分析數(shù)據(jù)的文件,分析不同導(dǎo)演作品的情感傾向。三、簡答題(本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鋼材行業(yè)綠色發(fā)展合作協(xié)議3篇
- 四川省鄰水縣事業(yè)單位招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 四川瀘州合江縣擬聘用黃春梅等一百二十一名同志高頻重點(diǎn)提升(共500題)附帶答案詳解
- 四川內(nèi)江隆昌市應(yīng)急管理局招聘2人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 吉林省長春市事業(yè)單位面向駐京院校招聘2025年應(yīng)屆生290人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 合肥市住房保障和房產(chǎn)管理局公開招考6名政府購買服務(wù)人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 華能營口仙人島熱電限責(zé)任公司2025年應(yīng)屆畢業(yè)生招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京市檢察機(jī)關(guān)所屬事業(yè)單位公開招考3名工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京市華僑服務(wù)中心招考事業(yè)單位工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京協(xié)和醫(yī)院編輯部合同制編輯招考聘用高頻重點(diǎn)提升(共500題)附帶答案詳解
- 鋼結(jié)構(gòu)施工管理培訓(xùn)課件
- 2025年工程春節(jié)停工期間安全措施
- 【頭頸】頸動(dòng)脈CTA及MRA評(píng)價(jià)課件
- 寒假安全教育
- 2024年度工程建設(shè)項(xiàng)目安全評(píng)價(jià)合同2篇
- 《飛機(jī)操縱面》課件
- 電力行業(yè)安全風(fēng)險(xiǎn)管理措施
- 商業(yè)咨詢報(bào)告范文大全
- 自我發(fā)展與團(tuán)隊(duì)管理課件
- 《婦產(chǎn)科學(xué)》課件-17.盆腔器官脫垂
- 小學(xué)一年級(jí)數(shù)學(xué)20以內(nèi)的口算題(可直接打印A4)
評(píng)論
0/150
提交評(píng)論