版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁景德鎮(zhèn)藝術(shù)職業(yè)大學(xué)
《人工神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、深度學(xué)習(xí)模型在圖像識別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個(gè)深度卷積神經(jīng)網(wǎng)絡(luò)來識別不同種類的動(dòng)物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果2、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個(gè)基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準(zhǔn)確診斷所有疾病,無需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗(yàn)和判斷,因?yàn)槿斯ぶ悄芩惴ǜ泳_C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專業(yè)知識和臨床經(jīng)驗(yàn)仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準(zhǔn)確性不受數(shù)據(jù)質(zhì)量和多樣性的影響3、人工智能在農(nóng)業(yè)領(lǐng)域的精準(zhǔn)種植方面有潛在應(yīng)用。假設(shè)利用人工智能監(jiān)測農(nóng)作物的生長狀況,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.通過圖像識別和傳感器數(shù)據(jù),實(shí)時(shí)獲取農(nóng)作物的生長參數(shù)B.基于數(shù)據(jù)分析預(yù)測病蟲害的發(fā)生,及時(shí)采取防治措施C.人工智能可以完全自主地進(jìn)行農(nóng)作物的種植和管理,無需人工干預(yù)D.結(jié)合氣象數(shù)據(jù)優(yōu)化灌溉和施肥方案,提高資源利用效率4、人工智能在制造業(yè)中的應(yīng)用可以提高生產(chǎn)效率和產(chǎn)品質(zhì)量。假設(shè)一家工廠使用人工智能進(jìn)行質(zhì)量檢測。以下關(guān)于人工智能在制造業(yè)中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.通過機(jī)器視覺技術(shù)檢測產(chǎn)品表面的缺陷和瑕疵B.利用數(shù)據(jù)分析預(yù)測設(shè)備的故障,提前進(jìn)行維護(hù)C.人工智能可以完全自主地優(yōu)化生產(chǎn)流程,無需人工干預(yù)D.與機(jī)器人技術(shù)結(jié)合,實(shí)現(xiàn)自動(dòng)化生產(chǎn)和裝配5、人工智能在交通領(lǐng)域的應(yīng)用包括智能交通管理、自動(dòng)駕駛等。假設(shè)一個(gè)城市要實(shí)施智能交通系統(tǒng)。以下關(guān)于人工智能在交通中的應(yīng)用描述,哪一項(xiàng)是錯(cuò)誤的?()A.通過分析交通流量數(shù)據(jù),優(yōu)化信號燈控制,減少擁堵B.自動(dòng)駕駛汽車可以提高交通安全,降低人為因素導(dǎo)致的事故發(fā)生率C.智能交通系統(tǒng)能夠完全解決城市的交通問題,無需其他基礎(chǔ)設(shè)施的改進(jìn)D.利用人工智能預(yù)測交通需求,合理規(guī)劃公共交通線路和站點(diǎn)6、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項(xiàng)是不正確的?()A.使用預(yù)訓(xùn)練的語言模型,并在特定任務(wù)上進(jìn)行微調(diào)B.從簡單的句子生成開始,逐漸過渡到復(fù)雜的文章生成C.不使用任何先驗(yàn)知識或語言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動(dòng)的學(xué)習(xí)D.引入對抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性7、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識和模型來解決新的問題。假設(shè)我們已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無需任何調(diào)整B.只需要對模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同8、人工智能中的模型評估指標(biāo)對于衡量模型性能至關(guān)重要。假設(shè)要評估一個(gè)二分類模型的性能,除了準(zhǔn)確率之外,以下哪種指標(biāo)在某些情況下更能反映模型的實(shí)際效果,特別是當(dāng)類別分布不均衡時(shí)?()A.召回率B.F1值C.精確率D.均方誤差9、假設(shè)要開發(fā)一個(gè)能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉庫中搬運(yùn)貨物,以下哪個(gè)模塊對于機(jī)器人的決策和行動(dòng)至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動(dòng)控制模塊D.以上都是10、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率11、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長篇文章中提取關(guān)鍵信息并形成簡潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是12、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要整合患者的病歷、檢查報(bào)告和影像資料等信息。以下關(guān)于數(shù)據(jù)隱私和安全的考慮,哪一項(xiàng)是最為重要的?()A.采用加密技術(shù)對患者數(shù)據(jù)進(jìn)行加密存儲和傳輸,確保數(shù)據(jù)不被泄露B.允許醫(yī)療數(shù)據(jù)在未經(jīng)患者同意的情況下用于研究和開發(fā)新的診斷模型C.忽略數(shù)據(jù)隱私和安全問題,優(yōu)先考慮系統(tǒng)的診斷準(zhǔn)確性D.將患者數(shù)據(jù)存儲在公共云服務(wù)上,以降低存儲成本13、在人工智能的模型訓(xùn)練中,數(shù)據(jù)預(yù)處理是重要的環(huán)節(jié)。假設(shè)要訓(xùn)練一個(gè)用于圖像識別的模型,以下關(guān)于數(shù)據(jù)預(yù)處理的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)清洗可以去除噪聲和異常值,提高數(shù)據(jù)質(zhì)量B.數(shù)據(jù)增強(qiáng)可以通過旋轉(zhuǎn)、縮放等操作增加數(shù)據(jù)的多樣性C.數(shù)據(jù)歸一化可以將數(shù)據(jù)的值范圍統(tǒng)一,有助于模型的訓(xùn)練和收斂D.數(shù)據(jù)預(yù)處理對模型的性能影響不大,可以忽略這一環(huán)節(jié),直接進(jìn)行模型訓(xùn)練14、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過程中可能會(huì)經(jīng)歷多次失敗,但通過不斷嘗試最終能夠?qū)W會(huì)行走15、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,具有很強(qiáng)的語言理解和生成能力。假設(shè)要將這樣的預(yù)訓(xùn)練模型應(yīng)用于特定的任務(wù),以下關(guān)于模型應(yīng)用的描述,正確的是:()A.可以直接在預(yù)訓(xùn)練模型上進(jìn)行微調(diào),就能適應(yīng)新的任務(wù),無需額外的訓(xùn)練數(shù)據(jù)B.預(yù)訓(xùn)練模型的參數(shù)固定,不能根據(jù)任務(wù)需求進(jìn)行調(diào)整和優(yōu)化C.預(yù)訓(xùn)練模型的語言生成能力很強(qiáng),但在特定領(lǐng)域的專業(yè)知識上可能存在不足D.預(yù)訓(xùn)練模型在所有自然語言處理任務(wù)中都能取得最優(yōu)的效果16、在人工智能的文本生成任務(wù)中,假設(shè)要生成一篇邏輯連貫、語言通順的文章,以下關(guān)于文本生成模型的描述,正確的是:()A.基于規(guī)則的文本生成方法能夠保證生成的文章完全符合語法和邏輯B.深度學(xué)習(xí)的文本生成模型可以學(xué)習(xí)語言的模式和規(guī)律,但可能存在重復(fù)和不一致的問題C.文本生成模型的輸出完全由輸入的提示信息決定,沒有任何隨機(jī)性D.現(xiàn)有的文本生成模型已經(jīng)能夠生成與人類寫作水平相當(dāng)?shù)奈恼?7、在自然語言處理中,機(jī)器翻譯是一個(gè)重要的應(yīng)用。假設(shè)正在開發(fā)一種新的機(jī)器翻譯模型,以下關(guān)于機(jī)器翻譯技術(shù)的描述,正確的是:()A.基于規(guī)則的機(jī)器翻譯方法總是能夠生成最準(zhǔn)確和自然的翻譯結(jié)果B.神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯模型不需要大量的平行語料進(jìn)行訓(xùn)練就能達(dá)到很好的效果C.結(jié)合統(tǒng)計(jì)方法和神經(jīng)網(wǎng)絡(luò)的機(jī)器翻譯模型能夠更好地處理復(fù)雜的語言結(jié)構(gòu)和語義D.機(jī)器翻譯的質(zhì)量只取決于所使用的算法,與語言的文化背景和語境無關(guān)18、人工智能中的異常檢測是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過程中檢測出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測方法適用于所有類型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無需人工特征工程D.以上方法在不同的應(yīng)用場景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇19、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)具有強(qiáng)大的生成能力。假設(shè)使用GAN生成逼真的圖像,以下關(guān)于GAN的描述,哪一項(xiàng)是不正確的?()A.GAN由生成器和判別器組成,兩者通過對抗訓(xùn)練不斷優(yōu)化B.GAN可以學(xué)習(xí)到數(shù)據(jù)的分布特征,從而生成新的、與真實(shí)數(shù)據(jù)相似的樣本C.GAN生成的圖像在質(zhì)量和真實(shí)性上可以與真實(shí)拍攝的圖像完全無法區(qū)分D.調(diào)整GAN的網(wǎng)絡(luò)結(jié)構(gòu)和訓(xùn)練參數(shù)可以影響生成圖像的效果20、在強(qiáng)化學(xué)習(xí)中,“Q-learning”算法通過估計(jì)什么來進(jìn)行決策?()A.狀態(tài)價(jià)值B.動(dòng)作價(jià)值C.策略D.獎(jiǎng)勵(lì)21、在人工智能的情感計(jì)算領(lǐng)域,除了文本和語音,面部表情的分析也具有重要意義。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)分析人類面部表情來推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實(shí)時(shí)性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計(jì)算機(jī)視覺的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)22、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個(gè)性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對于系統(tǒng)的設(shè)計(jì)最為關(guān)鍵?()A.學(xué)生的考試成績B.學(xué)生的學(xué)習(xí)時(shí)間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置23、人工智能中的情感計(jì)算旨在讓計(jì)算機(jī)理解和處理人類的情感。假設(shè)我們要開發(fā)一個(gè)能夠根據(jù)用戶的語音和文本判斷其情感狀態(tài)的系統(tǒng),以下關(guān)于情感計(jì)算的描述,哪一項(xiàng)是不正確的?()A.可以通過分析語音的語調(diào)、語速等特征來判斷情感B.文本情感分析通常依賴于情感詞典和機(jī)器學(xué)習(xí)算法C.情感計(jì)算的準(zhǔn)確性完全取決于數(shù)據(jù)的質(zhì)量和規(guī)模D.多模態(tài)情感分析結(jié)合了語音、文本、面部表情等多種信息源24、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)是兩種主要的學(xué)習(xí)方式??紤]一個(gè)場景,我們有大量未標(biāo)記的圖像數(shù)據(jù),希望從中發(fā)現(xiàn)一些潛在的模式和結(jié)構(gòu)。以下哪種機(jī)器學(xué)習(xí)方法更適合這種情況?()A.線性回歸B.決策樹C.聚類分析D.邏輯回歸25、在人工智能的發(fā)展中,硬件的支持對于提高計(jì)算效率和性能至關(guān)重要。假設(shè)要訓(xùn)練一個(gè)大規(guī)模的深度學(xué)習(xí)模型,需要快速處理海量的數(shù)據(jù)。以下哪種硬件架構(gòu)或設(shè)備在加速模型訓(xùn)練方面具有顯著的優(yōu)勢?()A.CPUB.GPUC.TPUD.FPGA二、簡答題(本大題共4個(gè)小題,共20分)1、(本題5分)說明人工智能在采購決策和成本控制中的應(yīng)用。2、(本題5分)說明人工智能中的可解釋性問題。3、(本題5分)簡述語音識別技術(shù)的原理和挑戰(zhàn)。4、(本題5分)談?wù)勅斯ぶ悄茉谥悄茇?cái)務(wù)管理預(yù)算編制中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)研究一個(gè)利用人工智能進(jìn)行寵物健康監(jiān)測的案例,包括生理數(shù)據(jù)監(jiān)測和疾病預(yù)警。2、(本題5分)考察某智能漁業(yè)資源管理系統(tǒng)中人工智能的魚類數(shù)量監(jiān)測和捕撈策略制定。3、(本題5分)研究一個(gè)使用人工智能的智能繪畫風(fēng)格模仿系統(tǒng),分析其如何學(xué)習(xí)和模仿特定的繪畫風(fēng)格。4、(本題5分)考察一個(gè)基于人工智能的智能音樂作品消費(fèi)者反饋收集系統(tǒng),討論其如何收集消費(fèi)者的反饋意見。5、(本題5分)研究一個(gè)使用人工智能的智能影視劇本情節(jié)生成系統(tǒng),分析其如何生成新穎的劇本情節(jié)。四、操作題(本大題共3個(gè)小題,共30分)1、(本題10分)使
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國家機(jī)關(guān)事務(wù)管理局北戴河接待服務(wù)中心度公開招考3名事業(yè)編制工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 四川省彭州市2025年衛(wèi)生系統(tǒng)公開招聘歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 二零二五年焊接材料產(chǎn)品召回與賠償合同3篇
- 吉林白山市江源區(qū)域外機(jī)關(guān)事業(yè)單位人才引進(jìn)歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 廈門市思明區(qū)融媒體中心補(bǔ)充招考2名非在編工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 南京市高淳區(qū)所屬事業(yè)單位2025年下半年招考工作人員高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京航空航天大學(xué)美育中心教學(xué)秘書招考聘用2人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 北京中電飛華通信股份限公司高頻重點(diǎn)提升(共500題)附帶答案詳解
- 內(nèi)蒙古赤峰市翁牛特旗事業(yè)單位公開招聘21人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 內(nèi)蒙古扎賚特旗度“綠色通道”引進(jìn)20名高層次和急需緊缺人才高頻重點(diǎn)提升(共500題)附帶答案詳解
- 服務(wù)重點(diǎn)客戶
- 工業(yè)濾芯行業(yè)利潤分析
- 2023年四川成都市初中學(xué)業(yè)水平考試生物試卷真題(答案詳解)
- 橋梁工程施工現(xiàn)場監(jiān)測方案
- 帝國主義:資本主義發(fā)展的最高最后階段
- 江蘇省蘇州市2023-2024學(xué)年高一上學(xué)期期末學(xué)業(yè)質(zhì)量陽光指標(biāo)調(diào)研生物試題
- 閱讀理解:如何找文章線索 課件
- 2024年廣西北部灣港集團(tuán)招聘筆試參考題庫含答案解析
- 科技館改造室內(nèi)裝修工程 投標(biāo)方案(技術(shù)方案)
- (外研版)高一英語必修1(全冊)同步練習(xí)匯總
- 朱熹文公世系通譜
評論
0/150
提交評論