淮北理工學(xué)院《快速表達(dá)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
淮北理工學(xué)院《快速表達(dá)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
淮北理工學(xué)院《快速表達(dá)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
淮北理工學(xué)院《快速表達(dá)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
淮北理工學(xué)院《快速表達(dá)設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁淮北理工學(xué)院《快速表達(dá)設(shè)計》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機(jī)視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標(biāo)志,并且要在不同天氣和光照條件下都能準(zhǔn)確識別。以下哪種方法可能有助于提高交通標(biāo)志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進(jìn)行識別C.采用簡單的線性分類器進(jìn)行標(biāo)志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標(biāo)志種類2、在計算機(jī)視覺中,圖像生成是創(chuàng)建新的圖像內(nèi)容。以下關(guān)于圖像生成的說法,錯誤的是()A.可以通過生成對抗網(wǎng)絡(luò)(GAN)、變分自編碼器(VAE)等模型進(jìn)行圖像生成B.圖像生成可以用于藝術(shù)創(chuàng)作、數(shù)據(jù)增強(qiáng)和虛擬場景構(gòu)建等任務(wù)C.生成的圖像質(zhì)量和真實性在不斷提高,但仍然存在一些缺陷和不完美之處D.圖像生成可以完全根據(jù)用戶的任意想象生成任何內(nèi)容,不受任何限制3、計算機(jī)視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關(guān)于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進(jìn)行關(guān)聯(lián)和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關(guān)系C.語義理解在圖像描述生成、問答系統(tǒng)等任務(wù)中發(fā)揮著重要作用D.語義理解已經(jīng)達(dá)到了非常完美的程度,能夠準(zhǔn)確理解任何復(fù)雜的圖像或視頻內(nèi)容4、在計算機(jī)視覺的目標(biāo)識別任務(wù)中,假設(shè)要識別不同種類的水果。以下關(guān)于應(yīng)對類內(nèi)差異和類間相似性的策略,哪一項是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動適應(yīng)能力5、計算機(jī)視覺在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過眼底圖像檢測糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識不足,導(dǎo)致標(biāo)注錯誤D.數(shù)據(jù)量過大,標(biāo)注工作耗時費力6、計算機(jī)視覺中的虛擬現(xiàn)實(VR)和增強(qiáng)現(xiàn)實(AR)應(yīng)用需要實時生成逼真的視覺效果。假設(shè)要在一個VR游戲中為玩家提供沉浸式的視覺體驗,或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實場景融合。以下哪種計算機(jī)視覺技術(shù)在實現(xiàn)這些效果時至關(guān)重要?()A.實時渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用7、在計算機(jī)視覺的人臉識別任務(wù)中,假設(shè)要實現(xiàn)一個能夠在不同光照和表情下準(zhǔn)確識別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項是最重要的?()A.對人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性8、在計算機(jī)視覺中,三維重建是從二維圖像恢復(fù)物體的三維結(jié)構(gòu)。以下關(guān)于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結(jié)構(gòu)光或深度學(xué)習(xí)方法進(jìn)行三維重建B.三維重建在虛擬現(xiàn)實、文物保護(hù)和工業(yè)設(shè)計等領(lǐng)域有著廣泛的應(yīng)用C.三維重建的結(jié)果總是精確無誤的,能夠完全還原物體的真實三維結(jié)構(gòu)D.噪聲、遮擋和圖像質(zhì)量等因素會對三維重建的結(jié)果產(chǎn)生影響9、圖像壓縮是為了減少圖像的數(shù)據(jù)量,同時保持可接受的視覺質(zhì)量。假設(shè)我們需要在網(wǎng)絡(luò)上傳輸大量的圖像,以下哪種圖像壓縮標(biāo)準(zhǔn)能夠在保證較高壓縮比的同時,提供較好的圖像質(zhì)量?()A.JPEGB.PNGC.GIFD.BMP10、在計算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會影響三維重建的結(jié)果11、計算機(jī)視覺中的圖像風(fēng)格遷移是一項有趣的任務(wù)。假設(shè)要將一幅油畫的風(fēng)格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點,哪一項是不正確的?()A.學(xué)習(xí)油畫和照片的特征表示,找到風(fēng)格和內(nèi)容的分離方式B.只關(guān)注風(fēng)格的遷移,不考慮照片原始內(nèi)容的保留C.采用對抗訓(xùn)練,使生成的圖像在風(fēng)格和內(nèi)容上達(dá)到平衡D.調(diào)整模型參數(shù),控制風(fēng)格遷移的強(qiáng)度和效果12、在計算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感13、當(dāng)進(jìn)行視頻中的動作識別時,假設(shè)要分析一段運動員訓(xùn)練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進(jìn)行獨立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨立的圖像14、在計算機(jī)視覺的場景理解任務(wù)中,需要對整個圖像場景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場景理解?()A.基于對象檢測和分類的方法B.基于語義分割和圖模型的方法C.基于深度學(xué)習(xí)的場景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法15、計算機(jī)視覺中的動作識別是對視頻中人物或物體的動作進(jìn)行分類和識別。以下關(guān)于動作識別的描述,不準(zhǔn)確的是()A.動作識別需要分析視頻中的時空特征來理解動作的模式和類別B.雙流卷積網(wǎng)絡(luò)在動作識別任務(wù)中被廣泛應(yīng)用,分別處理空間和時間信息C.動作識別在體育分析、視頻監(jiān)控和智能安防等領(lǐng)域具有重要的應(yīng)用價值D.動作識別技術(shù)已經(jīng)非常成熟,能夠準(zhǔn)確識別各種復(fù)雜和細(xì)微的動作16、計算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計算機(jī)視覺應(yīng)用的描述,哪一項是不正確的?()A.可以使用機(jī)器視覺系統(tǒng)對零件進(jìn)行實時檢測,快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)正常零件和缺陷零件的特征差異,實現(xiàn)準(zhǔn)確的缺陷檢測C.工業(yè)檢測中的計算機(jī)視覺系統(tǒng)需要具備高度的準(zhǔn)確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計算機(jī)視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進(jìn)行評估17、在計算機(jī)視覺的立體視覺中,需要通過兩個或多個相機(jī)獲取的圖像來計算深度信息。假設(shè)要為一個自動駕駛汽車構(gòu)建立體視覺系統(tǒng),以測量與前方障礙物的距離,同時要考慮實時性和準(zhǔn)確性的要求。以下哪種立體匹配算法在這種應(yīng)用場景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學(xué)習(xí)的匹配D.全局優(yōu)化匹配18、計算機(jī)視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進(jìn)行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響19、計算機(jī)視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強(qiáng)的去霧方法D.基于濾波的去霧方法20、在計算機(jī)視覺的立體視覺任務(wù)中,通過兩個或多個相機(jī)獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是21、計算機(jī)視覺在工業(yè)檢測中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測中的計算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測復(fù)雜的表面缺陷時比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測出各種缺陷C.工業(yè)檢測中的計算機(jī)視覺系統(tǒng)不需要考慮實時性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對表面缺陷檢測的結(jié)果沒有影響22、計算機(jī)視覺中的目標(biāo)重識別任務(wù)旨在在不同的攝像頭視角中識別出同一目標(biāo)。假設(shè)要在一個大型商場的多個攝像頭中尋找一個特定的人物。以下關(guān)于目標(biāo)重識別的描述,哪一項是不準(zhǔn)確的?()A.可以通過提取目標(biāo)的特征,如顏色、形狀和紋理,來進(jìn)行重識別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識別的準(zhǔn)確率C.目標(biāo)重識別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過建立目標(biāo)的特征庫,快速在多個攝像頭中進(jìn)行匹配和搜索23、在計算機(jī)視覺的全景圖像拼接任務(wù)中,假設(shè)要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關(guān)于圖像匹配和融合的步驟,哪一項是容易出錯的?()A.準(zhǔn)確找到相鄰圖像之間的特征點進(jìn)行匹配B.對匹配后的圖像進(jìn)行幾何校正和投影變換C.直接將圖像拼接在一起,不進(jìn)行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡24、計算機(jī)視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機(jī)B.工業(yè)線陣相機(jī)C.手機(jī)攝像頭D.監(jiān)控攝像頭25、對于圖像的語義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂會。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對圖像進(jìn)行簡單的分類,不進(jìn)行深入的語義分析D.隨機(jī)猜測圖像的語義26、計算機(jī)視覺中,以下哪個任務(wù)通常需要對圖像中的目標(biāo)進(jìn)行定位和分類?()A.圖像生成B.目標(biāo)檢測C.圖像超分辨率D.圖像去噪27、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢在于()A.去噪效果好B.保持圖像細(xì)節(jié)C.計算效率高D.以上都是28、在計算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索29、在計算機(jī)視覺的行人檢測任務(wù)中,假設(shè)要在一個擁擠的街道場景中準(zhǔn)確檢測出行人,場景中存在光照變化、人群遮擋和復(fù)雜背景。以下哪種特征表示方法在這種情況下可能更具魯棒性?()A.基于形狀的特征,如行人的輪廓B.基于顏色的特征,如行人衣服的顏色C.基于深度學(xué)習(xí)的特征,通過卷積神經(jīng)網(wǎng)絡(luò)自動學(xué)習(xí)D.不提取任何特征,直接對原始圖像進(jìn)行檢測30、計算機(jī)視覺中的圖像去噪旨在去除圖像中的噪聲,恢復(fù)清晰的圖像。假設(shè)要處理一張受到嚴(yán)重噪聲污染的天文圖像,以下關(guān)于去噪算法的選擇,哪一項是需要謹(jǐn)慎考慮的?()A.選擇基于濾波的去噪算法,如中值濾波B.采用基于深度學(xué)習(xí)的去噪算法,如自編碼器C.只考慮去噪效果,不關(guān)心圖像細(xì)節(jié)的保留D.根據(jù)噪聲的類型和強(qiáng)度選擇合適的去噪算法二、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用計算機(jī)視覺方法,檢測商場門口的人員聚集情況。2、(本題5分)對舞蹈比賽中的舞蹈音樂選擇和與舞蹈動作的配合度進(jìn)行評估3、(本題5分)通過計算機(jī)視覺,對不同類型的麥稈畫作品進(jìn)行分類。4、(本題5分)通過圖像分割技術(shù),將醫(yī)學(xué)圖像中的血管和神經(jīng)組織進(jìn)行分離。5、(本題5分)運用計算機(jī)視覺技術(shù),對電力設(shè)備的外觀進(jìn)行故障檢測。三、簡答題(本大題共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論