黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁黃岡職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對于一個(gè)包含大量文本和數(shù)值混合數(shù)據(jù)的數(shù)據(jù)集,以下哪種預(yù)處理方法較為常見?()A.文本向量化B.數(shù)值標(biāo)準(zhǔn)化C.特征工程D.以上都是2、數(shù)據(jù)分析中,數(shù)據(jù)安全策略的制定應(yīng)考慮多方面因素。以下關(guān)于數(shù)據(jù)安全策略制定的說法中,錯誤的是?()A.數(shù)據(jù)安全策略的制定應(yīng)包括數(shù)據(jù)的加密、備份、訪問控制和審計(jì)等方面B.數(shù)據(jù)安全策略的制定應(yīng)根據(jù)數(shù)據(jù)的重要性和敏感性來確定不同的安全級別C.數(shù)據(jù)安全策略的制定應(yīng)定期進(jìn)行評估和調(diào)整,以適應(yīng)不斷變化的安全環(huán)境D.數(shù)據(jù)安全策略的制定只需要考慮企業(yè)內(nèi)部的安全需求,不需要考慮外部的安全威脅3、在進(jìn)行數(shù)據(jù)融合時(shí),將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合4、在數(shù)據(jù)分析中,數(shù)據(jù)可視化不僅可以用于展示結(jié)果,還可以用于探索數(shù)據(jù)。假設(shè)要通過可視化探索兩個(gè)變量之間的關(guān)系,以下關(guān)于數(shù)據(jù)可視化探索的描述,哪一項(xiàng)是不正確的?()A.散點(diǎn)圖可以直觀地顯示兩個(gè)變量之間的線性或非線性關(guān)系B.熱力圖可以用于展示兩個(gè)變量在不同取值下的頻率或密度C.數(shù)據(jù)可視化探索只是輔助手段,不能替代統(tǒng)計(jì)分析和建模D.可以通過不斷調(diào)整可視化的參數(shù)和形式,發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和趨勢5、數(shù)據(jù)分析中,假設(shè)檢驗(yàn)是常用的方法之一。以下關(guān)于假設(shè)檢驗(yàn)的描述,錯誤的是:()A.原假設(shè)和備擇假設(shè)是相互對立的B.當(dāng)P值小于顯著性水平時(shí),拒絕原假設(shè)C.第一類錯誤是指錯誤地拒絕了原假設(shè)D.樣本量越大,越容易犯第二類錯誤6、數(shù)據(jù)分析過程中,數(shù)據(jù)清洗是重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)清洗目的的說法中,錯誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)質(zhì)量,為后續(xù)分析提供可靠基礎(chǔ)B.統(tǒng)一數(shù)據(jù)格式和單位,使不同來源的數(shù)據(jù)能夠進(jìn)行有效的整合和比較C.數(shù)據(jù)清洗可以增加數(shù)據(jù)的數(shù)量,從而提高數(shù)據(jù)分析結(jié)果的準(zhǔn)確性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性,避免因缺失數(shù)據(jù)而影響分析結(jié)果7、在探索性數(shù)據(jù)分析(EDA)中,以下關(guān)于數(shù)據(jù)探索方法的描述,正確的是:()A.只查看數(shù)據(jù)的統(tǒng)計(jì)摘要,就能全面了解數(shù)據(jù)的特征B.繪制箱線圖可以直觀展示數(shù)據(jù)的分布和異常值情況C.相關(guān)性分析對于所有類型的數(shù)據(jù)都能得出明確的結(jié)論D.EDA只是初步步驟,對后續(xù)的深入分析沒有幫助8、在進(jìn)行數(shù)據(jù)分析時(shí),數(shù)據(jù)采樣是一種常見的技術(shù)。假設(shè)要從一個(gè)大規(guī)模的數(shù)據(jù)集中抽取樣本進(jìn)行分析,以下關(guān)于數(shù)據(jù)采樣的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.隨機(jī)采樣能夠保證每個(gè)數(shù)據(jù)點(diǎn)被抽取的概率相等,具有較好的代表性B.分層采樣可以根據(jù)某些特征將數(shù)據(jù)集分層,然后從各層中抽取樣本,以確保樣本的多樣性C.采樣的樣本量越大,分析結(jié)果就越接近總體的真實(shí)情況,但也會增加計(jì)算成本D.數(shù)據(jù)采樣可以隨意進(jìn)行,不需要考慮數(shù)據(jù)的分布和特征9、在數(shù)據(jù)分析項(xiàng)目中,與利益相關(guān)者的溝通和理解需求至關(guān)重要。假設(shè)你正在為一家企業(yè)進(jìn)行數(shù)據(jù)分析,以下關(guān)于需求溝通的方法,哪一項(xiàng)是最有效的?()A.使用大量的技術(shù)術(shù)語和復(fù)雜的圖表來解釋分析過程B.以通俗易懂的語言,結(jié)合實(shí)際案例說明分析的目標(biāo)和結(jié)果C.只與技術(shù)人員溝通,忽略非技術(shù)背景的利益相關(guān)者D.不與利益相關(guān)者溝通,自行決定分析的方向和重點(diǎn)10、假設(shè)要分析股票市場數(shù)據(jù)的波動性,以下關(guān)于波動性分析方法的描述,正確的是:()A.計(jì)算簡單移動平均就能準(zhǔn)確衡量股票價(jià)格的波動性B.標(biāo)準(zhǔn)差越大,說明股票價(jià)格的波動性越小C.歷史波動率對預(yù)測未來股票價(jià)格的波動沒有參考價(jià)值D.采用ARCH和GARCH模型可以更好地捕捉股票價(jià)格波動的聚類性和異方差性11、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的原則有很多,其中簡潔明了是一個(gè)重要的原則。以下關(guān)于簡潔明了的描述中,錯誤的是?()A.簡潔明了的可視化圖表可以讓讀者更容易理解數(shù)據(jù)的含義B.簡潔明了的可視化圖表應(yīng)該避免使用過多的顏色和裝飾C.簡潔明了的可視化圖表可以通過減少數(shù)據(jù)的維度和細(xì)節(jié)來實(shí)現(xiàn)D.簡潔明了的可視化圖表只適用于簡單的數(shù)據(jù)展示,對于復(fù)雜的數(shù)據(jù)無法處理12、在進(jìn)行數(shù)據(jù)分析時(shí),發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點(diǎn)。對于離群點(diǎn)的處理,以下哪種方法較為恰當(dāng)?()A.直接刪除B.視為異常值,進(jìn)行特殊分析C.用平均值替代D.忽略不管13、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評估是確保數(shù)據(jù)可靠性的關(guān)鍵步驟。假設(shè)要評估一個(gè)新收集的數(shù)據(jù)集的質(zhì)量,以下關(guān)于數(shù)據(jù)質(zhì)量評估指標(biāo)的描述,正確的是:()A.只關(guān)注數(shù)據(jù)的準(zhǔn)確性,忽略完整性和一致性B.不制定明確的評估指標(biāo)和標(biāo)準(zhǔn),主觀判斷數(shù)據(jù)質(zhì)量C.綜合考慮準(zhǔn)確性、完整性、一致性、時(shí)效性、可用性等指標(biāo),制定量化的評估標(biāo)準(zhǔn)和方法,對數(shù)據(jù)質(zhì)量進(jìn)行全面評估,并提出改進(jìn)措施D.認(rèn)為數(shù)據(jù)質(zhì)量評估是一次性的工作,不需要持續(xù)監(jiān)測和改進(jìn)14、在時(shí)間序列數(shù)據(jù)分析中,預(yù)測未來值是常見的任務(wù)。假設(shè)你要預(yù)測股票價(jià)格的未來走勢,以下關(guān)于時(shí)間序列模型的選擇,哪一項(xiàng)是最需要謹(jǐn)慎考慮的?()A.選擇簡單的移動平均模型,基于歷史均值進(jìn)行預(yù)測B.應(yīng)用自回歸整合移動平均(ARIMA)模型,考慮序列的趨勢和季節(jié)性C.采用深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)或長短期記憶網(wǎng)絡(luò)(LSTM)D.不考慮時(shí)間序列的特點(diǎn),使用通用的回歸模型15、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量是一個(gè)關(guān)鍵問題。以下關(guān)于數(shù)據(jù)質(zhì)量的描述中,錯誤的是?()A.數(shù)據(jù)質(zhì)量包括數(shù)據(jù)的準(zhǔn)確性、完整性、一致性和時(shí)效性等方面B.數(shù)據(jù)質(zhì)量問題可能會導(dǎo)致數(shù)據(jù)分析結(jié)果的錯誤和不可靠C.提高數(shù)據(jù)質(zhì)量可以通過數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證和數(shù)據(jù)監(jiān)控等方法來實(shí)現(xiàn)D.數(shù)據(jù)質(zhì)量只與數(shù)據(jù)的來源有關(guān),與數(shù)據(jù)分析的方法和工具無關(guān)二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)在構(gòu)建數(shù)據(jù)倉庫時(shí),需要考慮哪些關(guān)鍵因素?請?jiān)敿?xì)說明數(shù)據(jù)倉庫的架構(gòu)設(shè)計(jì)、數(shù)據(jù)存儲和管理策略。2、(本題5分)解釋生存分析的概念和應(yīng)用場景,說明其主要的分析方法和指標(biāo),如生存函數(shù)、風(fēng)險(xiǎn)函數(shù)等。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行假設(shè)檢驗(yàn),包括常見的假設(shè)檢驗(yàn)類型(如t檢驗(yàn)、方差分析)的原理和應(yīng)用場景。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在餐飲外賣領(lǐng)域,訂單數(shù)據(jù)、配送數(shù)據(jù)和用戶評價(jià)數(shù)據(jù)等日益增多。分析如何借助數(shù)據(jù)分析手段,如配送效率提升、餐廳菜品優(yōu)化等,提高餐飲外賣服務(wù)質(zhì)量,同時(shí)探討在數(shù)據(jù)隱私保護(hù)、配送人員管理和市場競爭激烈方面可能面臨的問題及應(yīng)對方法。2、(本題5分)旅游業(yè)依賴數(shù)據(jù)分析來了解游客需求和優(yōu)化旅游服務(wù)。請?jiān)敿?xì)探討如何運(yùn)用數(shù)據(jù)分析來預(yù)測旅游需求、優(yōu)化旅游線路設(shè)計(jì)和提升游客滿意度,分析在跨區(qū)域和多源數(shù)據(jù)整合過程中可能出現(xiàn)的問題及解決辦法,同時(shí)考慮文化和地域差異對數(shù)據(jù)分析結(jié)果的影響。3、(本題5分)對于物流企業(yè)的配送路徑數(shù)據(jù),論述如何運(yùn)用數(shù)據(jù)分析優(yōu)化配送路線規(guī)劃,減少運(yùn)輸時(shí)間和成本,提高配送服務(wù)質(zhì)量。4、(本題5分)隨著遠(yuǎn)程辦公的普及,企業(yè)的員工工作數(shù)據(jù)、協(xié)作數(shù)據(jù)等大量產(chǎn)生。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如員工績效評估、團(tuán)隊(duì)協(xié)作效率分析等,優(yōu)化遠(yuǎn)程辦公管理,同時(shí)分析在數(shù)據(jù)安全風(fēng)險(xiǎn)、工作與生活平衡監(jiān)測和溝通效果評估方面的挑戰(zhàn)及解決辦法。5、(本題5分)在電商直播領(lǐng)域,直播數(shù)據(jù)、觀眾互動數(shù)據(jù)和銷售轉(zhuǎn)化數(shù)據(jù)等不斷產(chǎn)生。詳細(xì)論述如何運(yùn)用數(shù)據(jù)分析,例如主播表現(xiàn)評估、觀眾購買行為分析等,提升直播銷售效果,同時(shí)分析在數(shù)據(jù)實(shí)時(shí)性要求高、觀眾興趣變化快和行業(yè)規(guī)范不完善方面的挑戰(zhàn)及解決辦法。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)一家家具品牌的定制沙發(fā)業(yè)務(wù)收集了銷售數(shù)據(jù),包括沙發(fā)款

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論