版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1
EconomicPolicyChallengesfortheAgeofAI1
AntonKorinek(UniversityofVirginia,CSHVienna,andGovAI)
September2024
ThispaperexaminestheprofoundchallengesthattransformativeadvancesinAItowardsArtificialGeneralIntelligence(AGI)willposeforeconomistsandeconomicpolicymakers.IexaminehowtheAgeofAIwillrevolutionizethebasicstructureofoureconomiesbydiminishingtheroleoflabor,leadingtounprecedentedproductivitygainsbutraisingconcernsaboutjobdisruption,incomedistribution,andthevalueofeducationandhumancapital.Iexplorewhatrolesmayremainforlaborpost-AGI,andwhichproductionfactorswillgrowinimportance.ThepaperthenidentifieseightkeychallengesforeconomicpolicyintheAgeofAI:(1)inequalityandincomedistribution,(2)educationandskilldevelopment,(3)socialandpoliticalstability,(4)macroeconomicpolicy,(5)antitrustandmarketregulation,(6)intellectualproperty,(7)environmentalimplications,and(8)globalAIgovernance.Itconcludesbyemphasizinghoweconomistscancontributetoabetterunderstandingofthesechallenges.
I.Introduction
Therapidriseofartificialintelligence(AI)willpresentsignificantchallengesforeconomicpolicy.ThereleaseoflargelanguagemodelssuchasChatGPTinlate2022hasheightenedpublic
awarenessofAI'spotentialandstimulateddiscourseonitssocietalimpacts,yetitrepresentsjustonesteppingstoneonthelargertrajectoryofAIadvancement.AsAIcapabilitiescontinuetogrow,itbecomesincreasinglycrucialtore-evaluateoureconomicandpolicyframeworkstoensuretheirrelevanceandappropriatenessfortheAgeofAI.
ThispaperexaminestheeconomicimplicationsofadvancedAI,withparticularemphasisonthe
potentiallyimpendingdevelopmentofArtificialGeneralIntelligence(AGI)–AIsystemscapableofperformingintellectualtasksatorabovethehumanlevelacrossdomains.Iarguethattheadventof
AGIcouldfundamentallyalterthedynamicsofoureconomicsystem,necessitatingacomprehensivereassessmentofeconomictheoryandpolicy.
1ThispaperwaspreparedforaconferenceorganizedbythePetersonInstituteforInternationalEconomics
andtheInternationalMonetaryFundon“RethinkingEconomicPolicy:SteeringStructuralChange.”The
authorwouldliketothankJustinBullock,DuncanCass-Beggs,TomCunningham,BillGates,TimLaseter,
SamManning,DonghyunSuh,JoeStiglitz,andPetiaTopalovaaswellastheparticipantsoftheconferencefortheirthoughtfulcommentsanddiscussions.FinancialsupportfromtheUniversityofVirginia'sBankardFundforPoliticalEconomyandDardenSchoolofBusinessisgratefullyacknowledged.
2
IstartwithabriefdescriptionofthetrajectoryoftechnologicaladvancesdrivingAIprogress,
emphasizingtheexponentialgrowthincomputationalpowerandincreasesinalgorithmic
efficiency.ThenIdrawontheperspectivesofeminentAIresearchersandindustryleaderstolayoutpotentialtrajectoriesforAGIdevelopmentanddiscusskeyindicatorsthatmaysignalitsapproach.
Mymainfocusistheeconomicimplications.IarguethattheemergenceofAGIwillmarktheendoftheIndustrialAgeandusherinaneweconomicera,justliketheIndustrialAgeendedthe
Malthusianera.Thischangeinparadigmwillinvolveasignificantshiftinwhatfactorsofproductionarerelevantfortheeconomy,awayfromlabortoreproduciblefactorssuchascomputational
resourcesandrobots,withconsequentimplicationsforproductivityandoutputgrowth.
ThepaperproceedstoraiseeightchallengesthatadvancedAIposesforeconomicsandeconomicpolicy.First,Idiscussthechallengeofincomedistributionandinequalityinaworldwherehumanlabormaybecomeincreasinglysubstitutable.Second,Iassessthedevaluationofhumancapitalandtheneedtorecalibrateapproachestoeducationandskilldevelopment.Third,Ifocusonthe
resultingchallengetosocialandpoliticalstability.Fourth,Idiscussmacroeconomic
considerations,includingshiftsinaggregatedemandinahighlyautomatedeconomyinwhich
labor’srelevancediminishes,andpotentialadaptationsformonetaryandfiscalpolicies.Fifthandsixth,Ibringuptheimplicationsforantitrustpolicyandintellectualpropertyregimes.Seventh,I
examinetheenvironmentalchallengesfromrapidAIdevelopment.Eighth,Iraiseinternational
economicpolicyandgovernancechallenges,includingthemanagementofAI-drivengeopoliticaldynamicsandthemitigationofpotentialglobaldisparitiesinAIcapabilities.SuccessfullypreparingoureconomyandsocietyforthepotentialofAGIwillrequiremeetingallthedescribedchallenges–andlikelymanymore.
Thepaperconcludesbyreflectingontheroleofeconomicanalysisinaddressingthesechallenges,andbyemphasizinghowAIitselfcanbeleveragedasatoolforeconomicanalysis.Throughoutthepaper,IemphasizetheimportanceofproactivepreparationsforthechallengesandopportunitiespresentedbyadvancedAI.Asweapproachapotentiallytransformativetechnologicalshift,itis
imperativethatweexamineandadaptoureconomicpoliciestothenovelchallengesoftheAIage.Thispaperaimstocontributetothiscrucialresearchagenda.
II.TechnologicalCapabilities
ThefieldofAIhaswitnessedunprecedentedgrowthinrecentyears,withprogressacceleratingatapacethatchallengesourtraditionalunderstandingoftechnologicaladvancement.Thissection
exploresthekeydriversbehindthisrapidprogressandexaminesthepotentialtrajectoriesforfutureAIdevelopment.
1.Exponentialprogressincomputing
Moore'sLawhaslongbeenakeybenchmarkforprogressinthedomainofcomputation.Translatedintoeconomicterms,Moore(1965)predictedadoublingintheefficiencyofmicroprocessorseverytwoyears.Thisregularityhasapproximatelyheldformorethanahalf-centurynow,enablingrapidefficiencygainsincomputing,whichinturnunderpinnedtheriseofAIinrecentdecades.
3
ThepaceofgrowthinthecomplexityofAIsystems,however,hasfaroutstrippedeventheserapidefficiencygains.AsobservedbySevillaandRoldan(2024),theamountofcomputationalpower(or“compute”)employedintrainingcutting-edgeAIsystemshasdoubledeverysixmonthsoverthepastdecade.ThistrendisvisuallyrepresentedinFigure1.
Figure1:Thetrainingcomputeemployedbythemostcutting-edgeAImodelsdoubledonaverageeverysixmonthsforthepast15years.DistributedunderaCC-BY4.0licensebyEpoch.
Thetrainingcomputeofthesystemsdepictedinthefigurehasgrownmuchfasterthanwhatis
impliedbyMoore’sLawbecausetheinvestmentsincomputebyfrontierAIcompanieshaveon
averagetripledeveryyearovertheperiod
.2
EstimatesofthecostofcurrentfrontierAIsystemsareintherangeofhundredsofmillionsofdollars,potentiallysoonsurpassingthebilliondollarthreshold.IndustryobserverspredictthattheexponentialgrowthofthecomputeinvestedinfrontierAI
modelswillcontinueforatleastanotherthreetofiveyears,andpossiblylonger,giventherecenteconomicsuccessofAImodels(Sevillaetal,2024).Ifcurrenttrendscontinue,wemayseetrilliondollartrainingrunsforfrontierAImodelsbytheendofthedecade.
Therapidgrowthinthecomputationalresourcesdeployediscomplementedbysignificant
improvementsinalgorithmicefficiency.Hoetal(2024)reportthatthealgorithmicefficiencywith
whichAIsystemsutilizecomputehasgrownatarateofabout2.5xperyear.Whenmultiplyingtheseefficiencygainswiththe4xincreaseincomputeusestemmingfromMoore’sLawandincreased
investmentincompute,thesefactorsresultinastaggering10xincreaseintheeffectivecompute
2Adoublingofcomputeeverysixmonthsimpliesa16-foldincreaseevery2years.SinceMoore’sLawimplies“only”adoublingofchipefficiencyeverytwoyears,an8-foldincreaseinspendingoncomputeisrequired
everytwoyearstoachievetheobservedoverallgrowthofcompute–almostamountingtoatriplingperyear.
4
usedfortrainingfrontierAIsystemseverysingleyear.Inaddition,themostrecentgenerationofAImodelsthatcanperformreasoning-relatedtasks,suchasOpenAI’so1,alsoemploysubstantialamountsofcomputeattheinferencestage,i.e.,whentheyrespondingtouserinquiries.
Theimplicationsofthisrapidgrowthincomputeareprofound.AsAIsystemsbecomemore
powerful,theycantackleincreasinglycomplextasks,leadingtobreakthroughsinmoreandmoredomainsofhumancognitivework.ThecomplexityoffrontierAImodelsisrapidlyapproachingourbestestimatesofthecomplexityoftheneuralnetworksinthehumanbrain(Carlsmith,2020).
Moreover,advancesinroboticssuchashumanoidrobotsarealsoproceedingatarapidpace(see,e.g.,Duetal.,2024).
2.Computeandcapabilities
WhileinputstoAIandalgorithmicefficiencyareimportant,whatmattersfromaneconomic
perspectiveishowtheseinputstranslateintooutputs,i.e.,intoAIsystems’capabilities.Thisiswhatweturntonext.
ScalinglawsAdvancesinAIcapabilitiesfollowpredictableregularities–so-calledscalinglaws–thatdescribehowmuchbetterAIsystemsbecomeatpredictionasthenumberofmodel
parametersandtheamountoftrainingdataincrease(Kaplanetal,2020;Hoffmanetal,2022).
Together,theparametercountandamountoftrainingdatadeterminehowmuchcomputeis
neededtotrainamodel.ThedescribedscalinglawshaveheldformorethanadecadenowandareattheheartofthestrategiesemployedbyfrontierAIlabsintheirpursuitofAGI.Thepredictive
poweroftheselawsallowsresearcherstoestimatehowmuchimprovementinAIcapabilitiescanbeexpectedfromfurtherincreasesincomputationalresources,guidingbothresearchand
investmentbyAIlabs.Morerecently,OpenAI(2024)foundthatscalinglawsapplynotonlytothemodeltrainingstage,butalsowhenlettingAImodelsdeliberatebeforegivinganswersatthe
inferencestage,implyingthatmorecomputeispredictablyassociatedwithbetteranswers.
Moregenerally,neuralnetworks,thefundamentalbuildingblocksofmodernAIsystems,are
universalapproximatorsofarbitraryfunctions(Cybenko,1989;Horniketal,1989).Thismeansthat,intheory,theycanperformanyinformationprocessingtaskarbitrarilywell,givensufficient
resourcesandtrainingdata.Theexperienceofthepastdecadehasshownthattheyareinfactveryefficientfunctionapproximatorsforawiderangeofreal-worldusecases.ThispropertyunderpinsthepotentialofAIsystemsacrossawiderangeofapplications–includingthepossibilityof
performingalltheintellectualfunctionsofthehumanbrain.
3.PredictionsofAGI
OneofthecrucialquestionsregardingthefutureimpactofAIiswhetherandwhenAIsystemswillmatchhumanlevelsofintelligenceacrossallcognitivetasksthathumanscanperform,asthis
wouldcreatethepotentialforwidespreadlaborsubstitution.AIsystemsthatcandothisare
termedartificialgeneralintelligence(AGI)todistinguishthemfromnarrowAIsystemsthatcanonlyperformindividualtasksorasmallrangeoftasks,suchasimagerecognitionorvoicetranscription(Morrisetal.,2024).
5
Justafewyearsago,allAIsystemswerenarrow.However,modernlargelanguagemodels(LLMs)andothertypesofgenerativeAIsincetheearly2020sareincreasinglygeneralpurpose,performingagrowingrangeofcognitivefunctions,fromcreativetaskstosimpleformsofreasoning.
TherapidprogressoverthepastfewyearshascompressedthetimelinesforachievingAGI.Inthe2010s,themedianestimateofAIresearchersforwhenAGIwouldbereachedwasinthesecond
halfofthe21stcentury(Graceetal.,2018).Morerecently,agrowingnumberofAIresearchersandindustryleadershaveofferedmuchshortertimelines.GeoffreyHinton,oneofthethree"godfathersofdeeplearning"whowontheTuringawardfortheircontributionstothefield,proclaimedthat"[hehad]suddenlyswitched[his]viewsonwhetherthesethingsaregoingtobemoreintelligentthanus"andexpectsAGItobereachedin“5to20yearsbutwithoutmuchconfidence[since]weliveinveryuncertaintimes”(Hinton,2023).Likewise,SamAltman,CEOofOpenAI,statedthat"AGIwillbea
realityin5years,giveortake"inearly2024.Thesepredictionsarealsoinlinewiththeexpectationsofthegeneralpublic(Pauketatetal.,2023).
AGIwouldbetransformativeforoureconomyandsociety,creatingbothopportunitiesandrisksofunprecedentedscope.Thishasledtoagrowingsenseofalarmamongtechnologyexpertswhoseepotentiallyradicalchangesoccurringwithinashortperiod.TheyseetheexponentialgrowthofAIandassociatedscalinglawsandwonderwhytheworldisnotmorealarmed.
GeoffreyHinton’swarningsareakintoAlbertEinstein’slettertoUSPresidentFranklinDelano
Roosevelt,inwhichhewarnedofthepossibilitythatnuclearpowercouldbeharnessedforatomicweapons,givingrisetothenuclearage.Therewassignificantuncertaintyabouthowrealisticthe
predictionsofEinsteinandotherexpertswereatthetime,andhowsoontheirpredictionswouldbe
realized.In1933,ErnestRutherfordcalledthenotionthatnuclearpowercouldeverbeharnessed“moonshine.”Wearefacingsimilaruncertaintytoday,butthescalingofAIisnonetheless
proceedingrelentlessly.
4.HarbingersofAGI
EconomistshaveanimportantroletoplayinshapingthedirectionofprogresstowardsAGI(KorinekandStiglitz,2022)andinhelpingoursocietytoprepareforandadapttotheresultingdisruptionsaswellastointegratetheincreasinglycapableAIsystemsintooureconomicsystem.
GiventheuncertaintyaboutwhetherandhowquicklythedevelopmentofAGImightcometopass,itisimportanttocloselyfollowadvancesinAIandregularlyupdatepredictions.Todoso,itisusefultomonitorfourkeycategoriesofindicators:
1.AIResearchBreakthroughs:TrackingmajoradvancesinAIresearchanddevelopmentis
perhapsthemostdirectindicatorofprogressinAI,althoughitisdifficulttoappreciatethe
overallimpactofaseriesofrelativelysmallindividualadvances.Forexample,leadingAGIlabsarecurrentlyfocusedonimprovingthereasoningcapabilitiesofAIsystems–aweakpointof
LLMs.ThismayrequireapproachesthatgobeyondthecurrentarchitectureofLLMs.Someof
therecentadvancesinthisdomainwereGoogleDeepMind'sAlphaProofandAlphaGeometry2,whichsolvedmathproblemsofequivalentdifficultytoSilverMedalistsatthe2024InternationalMathOlympiad(DeepMindAlphaProofandAlphaGeometryTeams,2024).Moreover,monitoringthetrajectoryandspeedofAImodelsimprovementallowsobserverstorecognizetrendsand
6
makebetter-informedpredictions.
Aparticularlyimportanttypeofresearchbreakthroughareadvancesthatautomatethe
researchprocessitself,whichcansignificantlyacceleratethecreationofbetterAIsystemsinthefuture.IfAIsystemscanproducebetterAIsystemswithlessandlesshumaninput,itmarksanimportantsteptowardsAGI.AIsystemsarealreadycontributingtotheirowndevelopment.Pengetal.(2023)demonstratethataccesstoAI-poweredcodingassistantsallows
programmerstocompletecodingtasks56percentfaster–andthisalsoappliestothe
programmersoffutureAIsystems.Luetal.(2024)describeanAIagentthattheyterm“AI
scientist,”whichcanautonomouslyproduceideasforpapersincomputerscience,execute
them,andwriteuptheresults,givingrisetonovelresearchinsights.AIisalsobeingusedinthedesignofAIchips,potentiallyacceleratinghardwaredevelopmentforAIsystems(Mok,2024).
2.AIProductReleases:TrackingtheperformanceofnewAIproductsonestablishedbenchmarkscanprovideadditionalconcreteevidenceofAIcapabilities.Thisishighlyusefulforeveryone
whoperformscognitivework–forexample,ImyselfcontinuallytrackprogressingenerativeAIsystemstobetterunderstandhowIcanoptimallydeploytheminmyresearch.Thisallowsmetohaveafirst-personperspectiveonhowAIisrevolutionizingtheconductofeconomic
research(Korinek,2023a,2024).Thereisnogoodsubstituteforhavingthistypeofsubjectiveexperience.
3.AIDeploymentAcrosstheEconomy:Lastly,monitoringtheadoptionandimpactofAI
technologiesinworksettingscanofferareal-worldperspectiveonthepracticalAI
advancements.Thiscanmosteasilybeobservedinone’sownareaofwork–forexample,in
economics,generativeAIhasbeenadoptedheavilybyyoungerresearcherssuchasPhD
studentsandassistantprofessors,whereasoldergenerationsofeconomistslagbehind,
makingitharderforthemtoassessadvancesinAI.OftentimesIlearnaboutnewAIcapabilitiesbylookingovertheshouldersofmyyoungercolleagues.Naturally,acompletepicturecanonlybeobtainedbymonitoringthedeploymentofAIacrossdifferentsectorsoftheeconomytogetabetterunderstandingofwhattaskscanorcannotbeperformedbyAIandhowclosewearetoAGI(see,e.g.,Bonneyetal,2024).
4.FinancialMarketTrends:Financialmarketsareamirroroftheexpectationsoftheir
participantsandthereforereflectpublicexpectationsofAGI.Inprimarymarkets,the
expectationofAGIislikelytoleadtoagrowinginfluxofinvestmentsintoAI,bothonthe
hardwareandsoftwareside.Insecondarymarkets,stockpricesofexistingcorporationsthat
produce,incorporate,orotherwisebenefitfromAIarelikelytoseelargerun-upsinassetprices.Moreover,interestratesmayriseinparallelwithapick-upingrowthexpectations(Chowetal.,2023).Althoughfinancialmarketsareinherentlynoisyandpronetoboomsandbusts,their
forward-lookingnatureprovidesausefulcomplementtorealindicators.
III.EconomicimplicationsofAGI
ThissectiondiscussestheimplicationsofAGIforeconomicsandeconomicpolicy.Forthesakeofclarity,IwillcutthroughtheuncertaintyregardingthedevelopmentofAGIandtakeitasgiventhatAGIwillbereachedwithintheforeseeablefuture,inlinewithHinton’sprediction.Moreover,Iwill
7
assumethatprogressinroboticswillproceed,andthatAGI-poweredrobotscanperformanyphysicalworkthathumanscanperformsoonafterAGIisreached
.3
RigorouslypreparingeconomicpolicyfortheAgeofAGIwillrequirescenarioplanningtoexaminetheimpactofalternativeeconomicpoliciesunderdifferentscenariosfortechnological
advancement.Korinek(2023b)andKorinekandSuh(2024)provideexamples.However,eveniffullAGIisnotachievedinthenearfuture,theeconomicchallengesdiscussedbelowaredirectionallycorrectandrelevant.
1.Historicaleconomicparadigms
TounderstandtheeconomicimplicationsofachangeastransformativeasAGI,itisusefultotakeastepbackandlookatthelonger-termtrajectoryofoureconomicsystem,startingwiththe
MalthusianAge.IwillthenexplorewhatchangedintheIndustrialAgeandwhatislikelytochangeintheAgeofAGI,focusingontheeffectsonoutputandwages.
TheMalthusianAge
IntheMalthusianAge,theeconomywascharacterizedbyaproductionfunctionoftheformY=AF(T,L)
wheretechnology,A,waslargelystagnant(orgrowingveryslowly),land,T,wasthescarceresource,
andhumanswhoprovidedlabor,L,werereproducible.Inthisera,populationgrowthwas
constrainedbytheresourcestheeconomycouldproduce.Giventhefixedfactorland,anincreaseinpopulationimpliedadecreasingmarginalproducttohumanlabor.Humansreproducedtothepointwhereourmarginalproductequaledoursubsistencelevel.Alargerpopulationcouldnotbesupportedsoanyadditionalpopulationgrowthledtodestitution,hunger,anddeath.Giventhis
situation,landwasthemostvaluableproductionfactor–farmorevaluableinrelativetermsthanitistoday.Humansearnedasubsistenceincomethatwasjustenoughtosurvive.Fromapurely
economicperspective,themarginalhumanwasdispensable.
TheIndustrialAge
Theeconomyoftheindustrialagehasbeenthemainfocusofmoderneconomics–itcapturesthe
worldwearestilllivingin.ItischaracterizedbyaproductionfunctionoftheformY=AF(K,L)
wheregrowthintechnology,A,isthekeydriverofeconomicgrowth,capital,K,isthereproduciblefactorandaccompaniedthegrowthinA,andlabor,L,growssoslowlythatisusuallytakenas
exogenous.SincetheIndustrialRevolution,output,Y,inadvancedcountrieshasgrownabout20-fold,drivenbycomparativelyrapidtechnologicaladvances.
3RoboticshasrecentlyexperiencedbreakthroughsbycombiningrobotswithmorecapablebrainsintheformofmodernAIsystems.Robotsthatcanperformanyhumantaskswilllikelytakelongerthan5years,i.e.,theywillmaterializemoreslowlyifAGIhappenssoon.However,AGIwilllikelydesignrobotsthatcanperformanyphysicaltaskifhumanshavenotgottentheirfirst.
8
Giventheseadvances,laborsuddenlybecamethescarcefactorofproductionandexperiencedlargeincreasesinitsmarginalproductinparallelwiththe20-foldincreaseinoutput,givingrisetothelevelofwagesthatweseetoday.Inshort,labortransitionedfrombeingdispensableto
becomingthebottleneckproductionfactoroftheeconomy.
TheAgeofAGI
WhenAGIisreached,AIsystemscan,bydefinition,performanycognitiveworkthathumanscanperform,and,perourearlierassumption,willsoonperformanyphysicalworkaswell,givingrisetoaproductionfunctionoftheform
Y=AF(K,L+M)
inwhichthenewvariable,M,capturesmachines,intheformofAIcomputeandrobots.Inthissimplemodel,machinesareaperfectsubstituteforhumanlabor,i.e.,forbothhumancomputeandhumanphysicalcapabilities
.4
InanAGI-poweredworld,growthintechnologyAwillalsoaccelerate,asartificialbrainpowerandrobotscandrivescientificprogressandinnovation.BothtraditionalphysicalcapitalKandthenewmachineswillbereproducibleresources.Thedistinctionbetweenthetwowillincreasinglyblur.
Theywillaccumulatewithoutboundsandgenerateevermoreeconomiccapacity,inthespiritofRomer(1986)-styleAK-models.
Animmediateimplicationisthatthegrowthrateofoutputwillrise.Iftechnologyisacceleratingandallfactorsofproductionarereproducible,therearenomorebottleneckstooutputgrowthinthe
formoffixedfactors.
Theimplicationsforthemarginalproductoflaborarealsostraightforward.IntheMalthusianage,landwasthebottleneckfactor,andthemarginalproductoflaborwascompeteddowntothe
humansubsistencelevelbythecruelprocessofhumansmultiplyinguntiltheavailablelivingspaceandarablelandwereexhausted.TheIndustrialAgeusheredinaGoldenAgeforhumans:laborwassuddenlythebottleneckfactor,andtheaveragereturnstolaborgrewabout20-foldaboveour
subsistenceneeds.IntheAgeofAGI,there'snoreasonforlabortocontinuetoplaysuchaspecialrole.IfAIcansolveallcomputationalproblemsthatourbrainscansolve,whyshouldhumanlaborhaveaspecialstatusinoureconomicsystem?Laborwouldbeaperfectsubstituteformachinessothetwowouldbeequallyscarce.Asmoreandmoremachinesareaccumulated,thevalueoflaborandbyextensionwageswilldiminish.Thiswillfundamentallychallengeourpresentsystemof
incomedistribution.
However,thedivergenceofoutputgrowthandthemarginalproductoflaboralsosuggeststhe
contoursofasolution.WhatisneededtocreatesharedprosperityistotakeasmallsliveroftherapidlyrisingoutputfromAGIandgiveittotheworkerswhoselabormarketvalueisdiminished.ThiscreatesthepotentialforaParetoimprovement,althoughsuchasolutionmayfacesignificantpoliticaleconomychallenges(see,e.g.,BellandKorinek,2023).
4AmorecomprehensiveproductionfunctionunderAGIcoulddistinguishlaborintoitscomponentsphysicalandcognitivelaborandobservethatAIandrobotsrespectivelysubstituteforeachofthetwocomponents.See,e.g.,Growiecetal(2024).
9
2.AGIscenarios
Toillustratehowtheforcesdescribedaboveunfoldinacomprehensivemacroeconomicmodel,Iprovideanoverviewofthefourmainexamplesfrom"ScenariosfortheTransitiontoAGI"byKorinekandSuh(2024).Ouranalysisisgroundedinatask-basedframeworkinthespiritofZeira(1999)andAcemogluandRestrepo(2018).Ourmaininnovationistorepresentworkasconsistingoftasks
varyingincomputationalcomplexitythatcanbeautomatedonlywhenAIreachesasufficientlevelofcapabilities.ThisapproachallowsustomodelhowexponentialadvancesinAIprogressively
automatemoretasksand,ifthereisamaximumleveloftaskcomplexityandAIsurpassesit,tocapturetheadventofAGI.
Weconsiderfourdistinctscenarios,eachbasedondifferentassumptionsaboutthedistributionoftaskcomplexityandtherateoftechnologicalprogress.Inallscenarios,weassumethatan
automationindex,representingthemaximumcomplexityofautomatabletasks,growsovertimeatanexogenousrate,reflectingreflectstheobservedtrendsincomputingpowerandAIcapabilitiesdiscussedbefore.Thekeydifferentiatorbetweenscenariosisthedistributionoftaskcomplexity.
1.Business-As-UsualScenario:ThisscenarioassumesthattaskcomplexityfollowsaPareto
distributionwithaninfiniterighttail,andthefractionofnon-automatedtasksdeclinesata
constantrate.Thisimpliesthattherearealwaystasksthatonlyhumanscanperformorthatwechoosenottoautomate.Underourassumptions,outputgrowssteadilyatabout2percentperyear.Forourparameterization,boththereturnstocapitalandthewagebillriseindefinitely,
approximatelyintandem.
Moregenerally,thereisaracebetweenautomationandcapitalaccumulation–automationtendstopulldownwageswhereastheaccumulationofcapitalthatiscomplementarytotheremainingtasksforlaborincreaseswages.Ifautomationproceedstooquickly,wagesmaydecline,eveniffullautomationisneverreached.
2.BaselineAGIScenario:Inthisscenario,thetaskcomplexityofhumanworkfollowsa
distributionwithafiniteupperbound,andfullautomationisreachedwithin20years,inlinewithHinton’supperrangeforwhenAGIwillbereached.Theeconomicimplicationsarestark:wagesgrowduringtheinitialperiodbutcollapsebefore
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版旅游服務(wù)貨款擔(dān)保合同范本3篇
- 2025年食堂食品安全監(jiān)督服務(wù)合同3篇
- 2025版二零二五苗木種植與城市綠化工程合作合同3篇
- 2025年高科技產(chǎn)品外貿(mào)經(jīng)銷代理合同范本3篇
- 2025年食堂蔬菜定制化種植合作合同3篇
- 云母制品在醫(yī)療器械中的應(yīng)用探索考核試卷
- 二零二五年度木門安裝與室內(nèi)智能家居系統(tǒng)集成合同4篇
- 2025版學(xué)校宿管員招聘、培訓(xùn)與薪酬合同3篇
- 2025版國(guó)務(wù)院辦公廳事業(yè)單位教師聘用合同細(xì)則3篇
- 2025年倉(cāng)庫(kù)貨物存儲(chǔ)及保管合同
- GB/T 45120-2024道路車輛48 V供電電壓電氣要求及試驗(yàn)
- 春節(jié)文化常識(shí)單選題100道及答案
- 12123交管學(xué)法減分考試題及答案
- 24年追覓在線測(cè)評(píng)28題及答案
- 魚菜共生課件
- 《陸上風(fēng)電場(chǎng)工程概算定額》NBT 31010-2019
- 初中物理八年級(jí)下冊(cè)《動(dòng)能和勢(shì)能》教學(xué)課件
- 高考滿分作文常見(jiàn)結(jié)構(gòu)
- 心肌梗死診療指南
- 原油脫硫技術(shù)
- GB/T 2518-2019連續(xù)熱鍍鋅和鋅合金鍍層鋼板及鋼帶
評(píng)論
0/150
提交評(píng)論