版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高三數(shù)學(xué)大題規(guī)范訓(xùn)練(12)15.如圖1,四邊形為菱形,,,分別為,中點(diǎn),如圖2.將沿向上折疊,使得平面平面,將沿向上折疊.使得平面平面,連接.(1)求證:,,,四點(diǎn)共面:(2)求平面與平面所成角的余弦值.16.隨著春季學(xué)期開學(xué),某市市場(chǎng)監(jiān)管局加強(qiáng)了對(duì)學(xué)校食堂食品安全管理,助力推廣校園文明餐桌行動(dòng),培養(yǎng)廣大師生文明餐桌新理念,以“小餐桌”帶動(dòng)“大文明”,同時(shí)踐行綠色發(fā)展理念.該市某中學(xué)有A,B兩個(gè)餐廳為老師與學(xué)生們提供午餐與晚餐服務(wù),王同學(xué)、張老師兩人每天午餐和晚餐都在學(xué)校就餐,近一個(gè)月(30天)選擇餐廳就餐情況統(tǒng)計(jì)如下:選擇餐廳情況(午餐,晚餐)王同學(xué)9天6天12天3天張老師
6天6天6天12天假設(shè)王同學(xué)、張老師選擇餐廳相互獨(dú)立,用頻率估計(jì)概率.(1)估計(jì)一天中王同學(xué)午餐和晚餐選擇不同餐廳就餐的概率;(2)記X為王同學(xué)、張老師在一天中就餐餐廳的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;(3)假設(shè)M表示事件“A餐廳推出優(yōu)惠套餐”,N表示事件“某學(xué)生去A餐廳就餐”,PM>0,已知推出優(yōu)惠套餐的情況下學(xué)生去該餐廳就餐的概率會(huì)比不推出優(yōu)惠套餐的情況下去該餐廳就餐的概率要大,證明:17.已知且.(1)當(dāng)時(shí),求證:上單調(diào)遞增;(2)設(shè),已知,有不等式恒成立,求實(shí)數(shù)的取值范圍.18.定義:若變量,且滿足:,其中,稱是關(guān)于的“型函數(shù)”.(1)當(dāng)時(shí),求關(guān)于“2型函數(shù)”在點(diǎn)處的切線方程;(2)若是關(guān)于的“型函數(shù)”,(i)求的最小值:(ii)求證:,.19.給定正整數(shù),已知項(xiàng)數(shù)為且無重復(fù)項(xiàng)的數(shù)對(duì)序列:滿足如下三個(gè)性質(zhì):①,且;②;③與不同時(shí)在數(shù)對(duì)序列中.(1)當(dāng),時(shí),寫出所有滿足的數(shù)對(duì)序列;(2)當(dāng)時(shí),證明:;(3)當(dāng)為奇數(shù)時(shí),記的最大值為,求.
高三數(shù)學(xué)大題規(guī)范訓(xùn)練(12)15.如圖1,四邊形為菱形,,,分別為,的中點(diǎn),如圖2.將沿向上折疊,使得平面平面,將沿向上折疊.使得平面平面,連接.(1)求證:,,,四點(diǎn)共面:(2)求平面與平面所成角的余弦值.【答案】(1)證明見解答(2)【解答】【分析】(1)利用線面垂直的性質(zhì)得到,結(jié)合中位線定理得到,最后證明四點(diǎn)共面即可.(2)找到對(duì)應(yīng)二面角的平面角,放入三角形中,利用余弦定理求解即可.【小問1詳解】取,的中點(diǎn)分別為,,連接,,取,的中點(diǎn)分別為,,連接,,,由題意知,都是等邊三角形,所以,,因?yàn)槠矫嫫矫?,平面平面,所以平面,平面,所以,因?yàn)?,的中點(diǎn)分別為,,所以所以,所以,所以,又因?yàn)?,所以,因?yàn)?,的中點(diǎn)分別為,,所以,所以,所以,,,四點(diǎn)共面;小問2詳解】連接,,且延長(zhǎng)交于點(diǎn),由題意知,,所以,同理,所以就是二面角的平面角,設(shè),則,,,所以,同理,所以,所以平面與平面所成角的余弦值為.16.隨著春季學(xué)期開學(xué),某市市場(chǎng)監(jiān)管局加強(qiáng)了對(duì)學(xué)校食堂食品安全管理,助力推廣校園文明餐桌行動(dòng),培養(yǎng)廣大師生文明餐桌新理念,以“小餐桌”帶動(dòng)“大文明”,同時(shí)踐行綠色發(fā)展理念.該市某中學(xué)有A,B兩個(gè)餐廳為老師與學(xué)生們提供午餐與晚餐服務(wù),王同學(xué)、張老師兩人每天午餐和晚餐都在學(xué)校就餐,近一個(gè)月(30天)選擇餐廳就餐情況統(tǒng)計(jì)如下:選擇餐廳情況(午餐,晚餐)王同學(xué)9天6天12天3天張老師
6天6天6天12天假設(shè)王同學(xué)、張老師選擇餐廳相互獨(dú)立,用頻率估計(jì)概率.(1)估計(jì)一天中王同學(xué)午餐和晚餐選擇不同餐廳就餐的概率;(2)記X為王同學(xué)、張老師在一天中就餐餐廳的個(gè)數(shù),求X的分布列和數(shù)學(xué)期望;(3)假設(shè)M表示事件“A餐廳推出優(yōu)惠套餐”,N表示事件“某學(xué)生去A餐廳就餐”,,已知推出優(yōu)惠套餐的情況下學(xué)生去該餐廳就餐的概率會(huì)比不推出優(yōu)惠套餐的情況下去該餐廳就餐的概率要大,證明:.【答案】(1)(2)分布列見解答,(3)證明見解答【解答】【分析】(1)運(yùn)用古典概型求概率即可.(2)根據(jù)已知條件計(jì)算簡(jiǎn)單離散型隨機(jī)變量的分布列及期望.(3)運(yùn)用條件概率及概率加法公式計(jì)算可證明結(jié)果.【小問1詳解】設(shè)事件C為“一天中王同學(xué)午餐和晚餐選擇不同餐廳就餐”,因?yàn)?0天中王同學(xué)午餐和晚餐選擇不同餐廳就餐的天數(shù)為,所以.【小問2詳解】由題意知,王同學(xué)午餐和晚餐都選擇A餐廳就餐的概率為0.3,王同學(xué)午餐和晚餐都選擇B餐廳就餐的概率為0.1,張老師午餐和晚餐都選擇A餐廳就餐的概率為0.2,張老師午餐和晚餐都選擇B餐廳就餐的概率為0.4,記X為王同學(xué)、張老師在一天中就餐餐廳的個(gè)數(shù),則X的所有可能取值為1、2,所以,,所以X的分布列為X12P0.10.9所以X的數(shù)學(xué)期望【小問3詳解】證明:由題知PN所以PNM所以PNM所以PNM即:PNM所以PNM即.17.已知且.(1)當(dāng)時(shí),求證:在上單調(diào)遞增;(2)設(shè),已知,有不等式恒成立,求實(shí)數(shù)的取值范圍.【答案】(1)證明見解答;(2)【解答】【分析】(1)在上單調(diào)遞增,即在上恒成立,通過構(gòu)造函數(shù)求最值的方法證明.(2)不等式恒成立,即,通過構(gòu)造函數(shù)研究單調(diào)性求最值的方法,求不等式恒成立時(shí)實(shí)數(shù)的取值范圍.【小問1詳解】當(dāng)時(shí),,則,令,則,兩邊取對(duì)數(shù)得設(shè),則,所以在單調(diào)遞增,所以時(shí),即時(shí),,所以時(shí)恒成立,即,所以在上單調(diào)遞增.【小問2詳解】法一:,即,兩邊取對(duì)數(shù)得:,即.設(shè),則問題即為:當(dāng)時(shí),恒成立.只需時(shí),.,令得,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減.又因?yàn)?,則,所以時(shí),單調(diào)遞減,所以時(shí),,所以即.設(shè),則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,所以,當(dāng)時(shí),,時(shí),,所以的圖象與軸有1個(gè)交點(diǎn),設(shè)這個(gè)交點(diǎn)為,因?yàn)?,所以;所以?dāng)時(shí),,即當(dāng)時(shí),不等式,所以當(dāng)不等式在恒成立時(shí),.即實(shí)數(shù)的取值范圍為.法二:,即,兩邊取對(duì)數(shù)得:,即設(shè),令得,當(dāng)時(shí),,單調(diào)遞減.又因?yàn)?,所以,在單調(diào)遞減,由,則在恒成立,即,上式等價(jià)于,即,由在單調(diào)遞減,所以.即實(shí)數(shù)的取值范圍為.【小結(jié)】方法小結(jié):導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,常化為不等式恒成立問題,注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點(diǎn)、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理.證明不等式,構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.18.定義:若變量,且滿足:,其中,稱是關(guān)于的“型函數(shù)”.(1)當(dāng)時(shí),求關(guān)于的“2型函數(shù)”在點(diǎn)處的切線方程;(2)若是關(guān)于的“型函數(shù)”,(i)求的最小值:(ii)求證:,.【答案】(1)(2)(i);(ii)證明見解答【解答】【分析】(1)根據(jù)題意,得到,求得,結(jié)合導(dǎo)數(shù)的幾何意義,即可求解;(2)根據(jù)題意,得到,(i)化簡(jiǎn),結(jié)合基本不等式,即可求解;(ii)由題意,得到,設(shè),,其中,化簡(jiǎn)得到,記,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最小值,即可求解.【小問1詳解】解:當(dāng)時(shí),可得,則,所以,所求切線方程為,即.【小問2詳解】解:由是關(guān)于的“型函數(shù)”,可得,即,(i)因?yàn)?,?dāng)且僅當(dāng)即時(shí)取得最小值.(ii)由,即,則,且,,可設(shè),,其中,于是,記,可得,由,得,記,當(dāng)時(shí),當(dāng)時(shí),,則,所以.【小結(jié)】方法技巧:對(duì)于利用導(dǎo)數(shù)研究不等式的恒成立與有解問題的求解策略:1、合理轉(zhuǎn)化,根據(jù)題意轉(zhuǎn)化為兩個(gè)函數(shù)的最值之間的比較,列出不等式關(guān)系式求解;2、構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;3、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.4、根據(jù)恒成立或有解求解參數(shù)的取值時(shí),一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點(diǎn)的情況,進(jìn)行求解,若參變分離不易求解問題,就要考慮利用分類討論法和放縮法,注意恒成立與存在性問題的區(qū)別.19.給定正整數(shù),已知項(xiàng)數(shù)為且無重復(fù)項(xiàng)的數(shù)對(duì)序列:滿足如下三個(gè)性質(zhì):①,且;②;③與不同時(shí)在數(shù)對(duì)序列中.(1)當(dāng),時(shí),寫出所有滿足的數(shù)對(duì)序列;(2)當(dāng)時(shí),證明:;(3)當(dāng)為奇數(shù)時(shí),記的最大值為,求.【答案】(1)或(2)證明詳見解答(3)【解答】【分析】(1)利用列舉法求得正確答案.(2)利用組合數(shù)公式求得的一個(gè)大致范圍,然后根據(jù)序列滿足的性質(zhì)證得.(3)先證明,然后利用累加法求得.【小問1詳解】依題意,當(dāng),時(shí)有:或.【小問2詳解】當(dāng)時(shí),因?yàn)榕c不同時(shí)在數(shù)對(duì)序列中,所以,所以每個(gè)數(shù)至多出現(xiàn)次,又因?yàn)?,所以只有?duì)應(yīng)的數(shù)可以出現(xiàn)次,所以.【小問3詳解】當(dāng)為奇數(shù)時(shí),先證明.因?yàn)榕c不同時(shí)在數(shù)對(duì)序列中,所以,當(dāng)時(shí),構(gòu)造恰有項(xiàng),且首項(xiàng)的第個(gè)分量與末項(xiàng)的第個(gè)分量都為.對(duì)奇數(shù),如果和可以構(gòu)造一個(gè)恰有項(xiàng)的序列,且首項(xiàng)的第個(gè)分量與末項(xiàng)的第個(gè)分量都為,那么多奇數(shù)而言,可按如下方式構(gòu)造滿足條件的序列:首先,對(duì)于如下個(gè)數(shù)對(duì)集合:,,……,,每個(gè)集合中都至多有一個(gè)數(shù)對(duì)出現(xiàn)在序列中,所以,其次,對(duì)每個(gè)不大于的偶數(shù),將如下個(gè)數(shù)對(duì)并為一組:,共得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人創(chuàng)業(yè)無息貸款支持合同(二零二五版)3篇
- 2025年度個(gè)人房屋抵押貸款合同標(biāo)準(zhǔn)范本4篇
- 2025年度勞動(dòng)合同終止及離職員工離職手續(xù)辦理協(xié)議4篇
- 建筑用木材采購合同(2篇)
- 工廠交叉作業(yè)安全管理協(xié)議書(2篇)
- 2025年消防設(shè)施技術(shù)改造合作協(xié)議范本3篇
- 2024年咨詢工程師(經(jīng)濟(jì)政策)考試題庫(a卷)
- 水管檢修口施工方案
- 二零二五年度門窗行業(yè)市場(chǎng)調(diào)研與分析合同7篇
- 春節(jié)最幸福的描寫作文四篇
- 化學(xué)-河南省TOP二十名校2025屆高三調(diào)研考試(三)試題和答案
- 智慧農(nóng)貿(mào)批發(fā)市場(chǎng)平臺(tái)規(guī)劃建設(shè)方案
- 2023年水利部黃河水利委員會(huì)招聘考試真題
- 2022年袋鼠數(shù)學(xué)競(jìng)賽真題一二年級(jí)組含答案
- 生物教學(xué)數(shù)字化設(shè)計(jì)方案
- 半導(dǎo)體工藝用膠帶全球市場(chǎng)、份額、市場(chǎng)規(guī)模、趨勢(shì)、行業(yè)分析報(bào)告2024-2030年
- 建筑施工中常見的安全問題及解決方法
- 乳腺導(dǎo)管原位癌
- 冷庫管道應(yīng)急預(yù)案
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(共250余題)
- 網(wǎng)易云音樂用戶情感畫像研究
評(píng)論
0/150
提交評(píng)論