2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案_第1頁
2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案_第2頁
2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案_第3頁
2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案_第4頁
2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年外研銜接版高一數(shù)學下冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共9題,共18分)1、等差數(shù)列共有項,其中奇數(shù)項之和為偶數(shù)項之和為則其中間項為().A.28B.29C.30D.312、已知直線若圓上恰好存在兩個點P、Q,他們到直線的距離為1,則稱該圓為“完美型”圓。則下列圓中是“完美型”圓的是()A.B.C.D.3、【題文】設(shè)全集集合則等于A.B.C.D.4、【題文】若m、n是互不重合的直線,是互不重合的平面;給出下列命題:()

①若

②若

③若m不垂直于內(nèi)的無數(shù)條直線;

④若

其中正確命題的序號是A.①②B.③④C.②③D.②④5、【題文】已知函數(shù)是定義在上的奇函數(shù),且滿足當時,則使的的值是()A.B.C.D.6、【題文】已知某幾何體的三視圖如右圖所示,其中俯視圖是圓,且該幾何體的體積為直徑為2的球的體積為則()A.B.C.D.7、直線3x+2y+6=0和2x+5y﹣7=0的交點坐標為()A.(﹣4,﹣3)B.(4,3)C.(﹣4,3)D.(3,4)8、若x0是方程的解,則x0屬于區(qū)間()A.(1)B.()C.()D.(0,)9、已知α是第二限角,則下列結(jié)論正確的是()A.sinα?cosα>0B.sinα?tanα<0C.cosα?tanα<0D.以上都有可能評卷人得分二、填空題(共7題,共14分)10、在等差數(shù)列{an}中,已知以表示的前項和,則使得達到最大值的是11、=____.12、函數(shù)的定義域是____.13、【題文】若a>0,b>0,且=1,則a+2b的最小值為________.14、【題文】設(shè)f(x)的定義域為[0,2],則函數(shù)f(x2)的定義域是____15、已知函數(shù)f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對稱,則f(9)=____.16、函數(shù)y=tan(2x﹣)的定義域為____.評卷人得分三、計算題(共7題,共14分)17、已知x+y=x-1+y-1≠0,則xy=____.18、(2011?蒼南縣校級自主招生)已知二次函數(shù)y=ax2+bx+c圖象如圖所示;則下列式子:

ab,ac,a+b+c,a-b+c,2a+b,2a-b中,其值為正的式子共有____個.19、(2009?廬陽區(qū)校級自主招生)如圖所示的方格紙中,有△ABC和半徑為2的⊙P,點A、B、C、P均在格點上(每個小方格的頂點叫格點).每個小方格都是邊長為1的正方形,將△ABC沿水平方向向左平移____單位時,⊙P與直線AC相切.20、如圖,已知AC=AD=AE=BD=DE,∠ADB=42°,∠BDC=28°,則∠BEC=____.21、AB是⊙O的直徑,BC切⊙O于B,AC交⊙O于D,且AD=DC,那么sin∠ACO=____.22、某校一間宿舍里住有若干位學生,其中一人擔任舍長.元旦時,該宿舍里的每位學生互贈一張賀卡,并且每人又贈給宿舍樓的每位管理員一張賀卡,每位宿舍管理員也回贈舍長一張賀卡,這樣共用去了51張賀卡.問這間宿舍里住有多少位學生.23、設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.若A∩B={2},求實數(shù)a的值.評卷人得分四、證明題(共4題,共36分)24、初中我們學過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:

已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a

(1)用b;c及α,β表示三角形ABC的面積S;

(2)sin(α+β)=sinαcosβ+cosαsinβ.25、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.26、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.27、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.評卷人得分五、作圖題(共2題,共16分)28、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.29、繪制以下算法對應的程序框圖:

第一步;輸入變量x;

第二步,根據(jù)函數(shù)f(x)=

對變量y賦值;使y=f(x);

第三步,輸出變量y的值.評卷人得分六、綜合題(共4題,共40分)30、如圖1,在平面直角坐標系中,拋物線y=ax2+c與x軸正半軸交于點F(4;0);與y軸正半軸交于點E(0,4),邊長為4的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合;

(1)求拋物線的函數(shù)表達式;

(2)如圖2;若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點P且同時與邊CD交于點Q.設(shè)點A的坐標為(m,n)

①當PO=PF時;分別求出點P和點Q的坐標及PF所在直線l的函數(shù)解析式;

②當n=2時;若P為AB邊中點,請求出m的值;

(3)若點B在第(2)①中的PF所在直線l上運動;且正方形ABCD與拋物線有兩個交點,請直接寫出m的取值范圍.

31、如圖,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E為AB延長線上的一點,且EC交AD的延長線于F.

(1)設(shè)BE為x;DF為y,試用x的式子表示y.

(2)當∠ACE=90°時,求此時x的值.32、已知函數(shù)f(x)=ax2+4x+b,其中a<0,a、b是實數(shù),設(shè)關(guān)于x的方程f(x)=0的兩根為x1,x2;f(x)=x的兩實根為α;β.

(1)若|α-β|=1,求a、b滿足的關(guān)系式;

(2)若a、b均為負整數(shù);且|α-β|=1,求f(x)解析式;

(3)試比較(x1+1)(x2+1)與7的大?。?3、如圖,已知P為∠AOB的邊OA上的一點,以P為頂點的∠MPN的兩邊分別交射線OB于M、N兩點,且∠MPN=∠AOB=α(α為銳角).當∠MPN以點P為旋轉(zhuǎn)中心,PM邊與PO重合的位置開始,按逆時針方向旋轉(zhuǎn)(∠MPN保持不變)時,M、N兩點在射線OB上同時以不同的速度向右平行移動.設(shè)OM=x,ON=y(y>x>0),△POM的面積為S.若sinα=;OP=2.

(1)當∠MPN旋轉(zhuǎn)30°(即∠OPM=30°)時;求點N移動的距離;

(2)求證:△OPN∽△PMN;

(3)寫出y與x之間的關(guān)系式;

(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.參考答案一、選擇題(共9題,共18分)1、B【分析】∴中間項為=29,故選B項【解析】【答案】B2、D【分析】【解析】

因為直線若圓上恰好存在兩個點P、Q,他們到直線的距離為1,則稱該圓為“完美型”圓。則下列圓中是“完美型”圓的是滿足圓心到直線的距離為即可知選選D【解析】【答案】D3、B【分析】【解析】

試題分析:因為全集集合

所以所以=選B.

考點:集合的運算【解析】【答案】B4、D【分析】【解析】①錯誤;直線n與平面的位置關(guān)系不確定。②正確;

③錯誤。m可以垂直于平面內(nèi)的一組平行線;④正確。由線面平行的判定定理可知。

故選D【解析】【答案】D5、D【分析】【解析】因為所以則是周期為4的周期函數(shù)。依題意可得,當時,令解得符合。而當時,解得不符合。當時,則令解得不符合。當時,則令解得符合。綜上可得,當時,的解為因為是周期為4的周期函數(shù),所以的解集為故選D【解析】【答案】D6、B【分析】【解析】

試題分析:由三視圖知:幾何體是圓柱挖去一個同底等高的圓錐;

圓柱與圓錐的底面半徑為1;高都為1;

∴幾何體的體積V1=π×12×1-×π×12×1=

直徑為2的球的體積V2=π×13=∴V1:V2=1:2.故選:B.

考點:三視圖求幾何體的體積,球的體積公式.【解析】【答案】B7、C【分析】【解答】解:由題意得:

解得:

故選:C.

【分析】直接聯(lián)立兩直線方程組成的方程組求解兩直線的交點坐標.8、C【分析】【解答】解:∵

∴x0屬于區(qū)間().

故選C.

【分析】由題意x0是方程的解,根據(jù)指數(shù)函數(shù)和冪數(shù)函數(shù)的增減性進行做題.9、B【分析】解:因為α是第二限角;

所以sinα>0;cosα<0,tanα<0;

所以sinα?tanα<0.

故選B.

直接利用角的象限;判斷正弦函數(shù)與余弦函數(shù);正切函數(shù)的值的符號,然后判斷選項.

本題考查角的象限與三角函數(shù)值的符號的判斷,考查計算能力.【解析】【答案】B二、填空題(共7題,共14分)10、略

【分析】試題分析:由于當n=10是最大.考點:等差數(shù)列的前n項和.【解析】【答案】1011、略

【分析】

∵=

∴=-n=0

故答案為:0

【解析】【答案】由平均數(shù)的性質(zhì),可得=而=-n代入可得答案.

12、略

【分析】由得,所以定義域為【解析】【答案】13、略

【分析】【解析】2a+4b+3=(2a+4b+3)·=[(2a+b)+3(b+1)]·=1+++3≥4+2所以a+2b≥【解析】【答案】14、略

【分析】【解析】略【解析】【答案】15、2【分析】【解答】解:法一:∵函數(shù)y=f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對稱;

∴函數(shù)y=f(x)與函數(shù)y=3x互為反函數(shù);

又∵函數(shù)y=3x的反函數(shù)為:

y=log3x;

即f(x)=log3x;

∴f(9)=log39=2;

故答案為:2.

法二:假設(shè)f(9)=t;則函數(shù)f(x)的圖象過點(9,t)

則點(9,t)關(guān)于直線y=x對稱的點(t,9)在函數(shù)y=3x的圖象上。

即9=3t;解得t=2

故答案為:2.

【分析】法一:根據(jù)兩個函數(shù)的圖象關(guān)于直線y=x對稱可知這兩個函數(shù)互為反函數(shù);故只要利用求反函數(shù)的方法求出原函數(shù)的反函數(shù),然后將9代入函數(shù)的解析式即可.

法二:假設(shè)f(9)=t,則函數(shù)f(x)的圖象過點(9,t),則點(9,t)關(guān)于直線y=x對稱的點(t,9)在函數(shù)y=3x的圖象上,代入解析式可求出t的值.16、【分析】【解答】解:要使函數(shù)的解析式有意義自變量x須滿足:≠kπ+k∈Z

解得:

故函數(shù)的定義域為

故答案為

【分析】根據(jù)正弦函數(shù)的定義域,我們構(gòu)造關(guān)于x的不等式,解不等式,求出自變量x的取值范圍,即可得到函數(shù)的定義域.三、計算題(共7題,共14分)17、略

【分析】【分析】先把原式化為x+y=+=的形式,再根據(jù)等式的性質(zhì)求出xy的值即可.【解析】【解答】解:∵x+y=x-1+y-1≠0;

∴x+y=+=;

∴xy=1.

故答案為:1.18、略

【分析】【分析】由函數(shù)圖象可以得到a<0,b>0,c<0,令y=0,方程有兩正實根,根據(jù)以上信息,判斷六個代數(shù)式的正負.【解析】【解答】解:從函數(shù)圖象上可以看到,a<0,b>0;c<0,令y=0,方程有兩正實根;

則①ab<0;

②ac>0;

③當x=1時,a+b+c>0;

④當x=-1時,a-b+c<0;

⑤對稱軸x=-=1,2a+b=0;

⑥對稱軸x=-=1,b>0,2a-b<0.

故答案為2.19、略

【分析】【分析】平移后利用切線的性質(zhì)作PD⊥A′C′于點D求得PD,再求得PA′的長,進而得出PA-PA′和AA″的長,即可求得平移的距離.【解析】【解答】解:∵A′C′與⊙P相切;

作PD⊥A′C′于點D;

∵半徑為2;

∴PD=2;

∵每個小方格都是邊長為1的正方形;

∴AB=5,AC=2;

∴cosA==;

∴PA′=PD÷cosA=2÷=;

∴AA′=5-,AA″=5+;

故答案為5-或5+.20、略

【分析】【分析】根據(jù)等腰三角形的性質(zhì)和等邊三角形的性質(zhì)分別得出∠AEC,∠BED,∠AED的度數(shù),由∠BEC=∠AEC+∠BED-∠AED即可求解.【解析】【解答】解:∠ADC=42°+28°=70°.∠CAD=180°-2×70°=40°;

∠DAE=∠ADE=∠AED=∠60°;

于是;在△ACE中,∠CAE=60°+40°=100°;

∠AEC=(180°-100°)÷2=40°.

又∵在△BDE中;∠BDE=60°+42°=102°;

∴∠BED=(180-102)÷2=39°

從而∠BEC=∠AEC+∠BED-∠AED=40°+39°-60°=19°.

故答案為19°.21、略

【分析】【分析】連接BD,作OE⊥AD.在Rt△OEC中運用三角函數(shù)的定義求解.【解析】【解答】解:連接BD;作OE⊥AD.

AB是直徑;則BD⊥AC.

∵AD=CD;

∴△BCD≌△BDA;BC=AB.

BC是切線;點B是切點;

∴∠ABC=90°,即△ABC是等腰直角三角形,∠A=45°,OE=AO.

由勾股定理得,CO=OB=AO;

所以sin∠ACO==.

故答案為.22、略

【分析】【分析】設(shè)有x個學生;y個管理員.

①該宿舍每位學生與贈一張賀卡;那么每個人收到的賀卡就是x-1張,那么總共就用去了x(x-1)(乘法原理)張賀卡;

②每個人又贈給每一位管理員一張賀卡;那么就用去了xy(乘法原理)張賀卡;

③每位管理員也回贈舍長一張賀卡;那么就用去了y張賀卡;

所以根據(jù)題意列出方程:x(x-1)+xy+y=51(加法原理),然后根據(jù)生活實際情況解方程即可.【解析】【解答】解:設(shè)有x個學生;y個管理員.

該宿舍每位學生與贈一張賀卡;那么每個人收到的賀卡就是x-1張,那么總共就用去了x(x-1)張賀卡;

每個人又贈給每一位管理員一張賀卡;那么就用去了xy張賀卡;

每位管理員也回贈舍長一張賀卡;那么就用去了y張賀卡;

∴x(x-1)+xy+y=51;

∴51=x(x-1)+xy+y=x(x-1)+y(x+1)≥x(x-1)+x+1=x2+1(當y=1時取“=”);

解得;x≤7;

x(x-1)+(x+1)y=51

∵51是奇數(shù);而x和x-1中,有一個是偶數(shù);

∴x(x-1)是偶數(shù);

∴(x+1)y是奇數(shù);

∴x是偶數(shù);

而x≤7;所以x只有246三種情況;

當x=2時,y=(不是整數(shù);舍去);

當x=4時,y=(不是整數(shù);舍去);

當x=6時;y=3.

所以這個宿舍有6個學生.23、解:由x2﹣3x+2=0,得x=1或x=2;

故集合A={1;2}.

∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0?a=﹣1或a=﹣3;

當a=﹣1時,B={x|x2﹣4=0}={﹣2;2},滿足條件;

當a=﹣3時,B={x|x2﹣4x+4=0}={2};滿足條件;

綜上;知a的值為﹣1或﹣3.

【分析】【分析】先化簡集合A,再由A∩B={2}知2∈B,將2代入x2+2(a+1)x+(a2﹣5)=0解決.四、證明題(共4題,共36分)24、略

【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;

(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;

則CE=AC?sin(α+β)=bsin(α+β);

∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);

即S=bcsin(α+β);

(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;

∵AD⊥BC;

∴AB?ACsin(α+β)=BD?AD+CD?AD;

∴sin(α+β)=;

=+;

=sinαcosβ+cosαsinβ.25、略

【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;

則AC=AE;AB=5DE;

又∵G是AB的中點;

∴AG=ED.

∴ED2=AF?AE;

∴5ED2=AF?AE;

∴AB?ED=AF?AE;

∴=;

∴△BAF∽△AED;

∴∠ABF=∠EAD;

而∠EAD+∠DAB=90°;

∴∠ABF+∠DAB=90°;

即AD⊥BF.26、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;

(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點;

∴cosC==.

答:cosC的值是.

(3)BF過圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.27、略

【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.五、作圖題(共2題,共16分)28、略

【分析】【分析】作點A關(guān)于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設(shè)管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.

∵點A與點A′關(guān)于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費用為10000元.29、解:程序框圖如下:

【分析】【分析】該函數(shù)是分段函數(shù),當x取不同范圍內(nèi)的值時,函數(shù)解析式不同,因此當給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因為函數(shù)解析式分了三段,所以判斷框需要兩個,即進行兩次判斷,于是,即可畫出相應的程序框圖.六、綜合題(共4題,共40分)30、略

【分析】【分析】(1)已知拋物線的對稱軸是y軸;頂點是(0,4),經(jīng)過點(4,0),利用待定系數(shù)法即可求得函數(shù)的解析式;

(2)①過點P作PG⊥x軸于點G;根據(jù)三線合一定理可以求得G的坐標,則P點的橫坐標可以求得,把P的橫坐標代入拋物線的解析式,即可求得縱坐標,得到P的坐標,再根據(jù)正方形的邊長是4,即可求得Q的縱坐標,代入拋物線的解析式即可求得Q的坐標,然后利用待定系數(shù)法即可求得直線PF的解析式;

②已知n=2;即A的縱坐標是2,則P的縱坐標一定是2,把y=2代入拋物線的解析式即可求得P的橫坐標,根據(jù)AP=2,且AP∥y軸,即可得到A的橫坐標,從而求得m的值;

(3)假設(shè)B在M點時,C在拋物線上或假設(shè)當B點在N點時,D點同時在拋物線上時,求得兩個臨界點,當B在MP和FN之間移動時,拋物線與正方形有兩個交點.【解析】【解答】解:(1)由拋物線y=ax2+c經(jīng)過點E(0;4),F(xiàn)(4,0)

,解得;

∴y=-x2+4;

(2)①過點P作PG⊥x軸于點G;

∵PO=PF∴OG=FG

∵F(4;0)∴OF=4

∴OG=OF=×4=2;即點P的橫坐標為2

∵點P在拋物線上。

∴y=-×22+4=3;即P點的縱坐標為3

∴P(2;3)

∵點P的縱坐標為3;正方形ABCD邊長是4,∴點Q的縱坐標為-1

∵點Q在拋物線上,∴-1=-x2+4

∴x1=2,x2=-2(不符題意;舍去)

∴Q(2;-1)

設(shè)直線PF的解析式是y=kx+b;

根據(jù)題意得:;

解得:,

則直線的解析式是:y=-x+6;

②當n=2時;則點P的縱坐標為2

∵P在拋物線上,∴2=-x2+4

∴x1=2,x2=-2

∴P的坐標為(2,2)或(-2;2)

∵P為AB中點∴AP=2

∴A的坐標為(2-2,2)或(-2-2;2)

∴m的值為2-2或-2-2;

(3)假設(shè)B在M點時;C在拋物線上,A的橫坐標是m,則B的橫坐標是m+4;

代入直線PF的解析式得:y=-(m+4)+6=-m;

則B的縱坐標是-m,則C的坐標是(m+4,-m-4).

把C的坐標代入拋物線的解析式得:-m-4=-(m+4)2+4,解得:m=-1-或-1+(舍去);

當B在E點時;AB經(jīng)過拋物線的頂點,則E的縱坐標是4;

把y=4代入y=-x+6,得4=-x+6,解得:x=;

此時A的坐標是(-,4),E的坐標是:(;4),此時正方形與拋物線有3個交點.

當點B在E點時,正方形與拋物線有兩個交點,此時-1-<m<-;

當點B在E和P點之間時,正方形與拋物線有三個交點,此時:-<x<-2;

當B在P點時;有兩個交點;

假設(shè)當B點在N點時;D點同時在拋物線上時;

同理,C的坐標是(m+4,-m-4),則D點的坐標是:(m,-m-4);

把D的坐標代入拋物線的解析式得:-m-4=-m2+4,解得:m=3+或3-(舍去);

當B在F與N之間時,拋物線與正方形有兩個交點.此時0<m<3+.

故m的范圍是:-1-<m-或m=2或0<m<3+.31、略

【分析】【分析】(1)過B作BG∥AF交BCEC于G,則可以得到△CDF∽△CBG,接著利用相似三角形的性質(zhì)得到,在Rt△ABD中,利用勾股定理可得;又△EGB∽△EFA,由此利用相似三角形的性質(zhì)即可求出y與x的函數(shù)關(guān)系;

(2)當∠ACE=90°時,則有∠FCD=∠DAC,由此得到Rt△ADC∽Rt△CDF,接著利用相似三角形的性質(zhì)得到CD2=AD?DF,所以16=,從而得到,代入,即可求出x.【解析】【解答】解:(1)過B作BG∥AF交EC于G,

則△CDF∽△CBG;

∴;

∴;

在Rt△ABD中,可得;

又∵△EGB∽△EFA;

∴;

∴;

(2)當∠ACE=90°時;則有∠FCD=∠DAC;

∴Rt△ADC∽Rt△CDF;

∴;

∴CD2=AD?DF;

∴16=;

∴;

代入,有;

解得.32、略

【分析】【分析】(1)根據(jù)f(x)=x的兩實根為α、β,可列出方程用a,b表示兩根α,β,根據(jù)|α-β|=1,可求出a、b滿足的關(guān)系式.

(2)根據(jù)(1)求出的結(jié)果和a、b均為負整數(shù),且|α-β|=1,可求出a,b;從而求出f(x)解析式.

(3)因為關(guān)于x的方程f(x)=0的兩根為x1,x2,用a和b表示出(x1+1)(x2+1),討論a,b的關(guān)系可比較(x1+1)(x2+1)與7的大

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論