2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷_第1頁(yè)
2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷_第2頁(yè)
2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷_第3頁(yè)
2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷_第4頁(yè)
2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年滬科版高一數(shù)學(xué)上冊(cè)月考試卷726考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共6題,共12分)1、【題文】已知全集集合則=__________.A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}2、【題文】已知直線a、b、c與平面α.給出:

①a⊥c,b⊥ca∥b;②a∥c,b∥ca∥b;③a∥α,b∥αa∥b;④a⊥α,b⊥αa∥b.其中正確命題的個(gè)數(shù)是()A.1B.2C.3D.43、根據(jù)某組調(diào)查數(shù)據(jù)制作的頻率分布直方圖如圖所示;則該組數(shù)據(jù)中的數(shù)位于區(qū)間(60,70)內(nèi)的頻率是()

A.0.004B.0.04C.0.44D.44、如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條互相垂直的半徑,半徑長(zhǎng)度為2,則該幾何體的表面積是()A.17πB.18πC.20πD.28π5、已知函數(shù)f(x)=是(-∞,+∞)上的減函數(shù),那么a的取值范圍是()A.(0,1)B.(0,)C.[)D.()6、一圖形的投影是一條線段,這個(gè)圖形不可能是()A.線段B.直線C.圓D.梯形評(píng)卷人得分二、填空題(共8題,共16分)7、執(zhí)行如圖所示的程序框圖,若輸入x=10,則輸出y的值為_____.8、.如圖,是半徑為1的圓的直徑,是邊長(zhǎng)為1的正三角形,則的最大值為.9、【題文】在正方體中,面對(duì)角線與體對(duì)角線所成角等于。

_______________10、【題文】如果那么的最小值是________11、【題文】將一塊邊長(zhǎng)為cm的正方形剪去4個(gè)角(4個(gè)全等的小正方形)做成一個(gè)無(wú)蓋鐵盒,則鐵盒的容積(cm3)與剪去的小正方形的邊長(zhǎng)(cm)的函數(shù)關(guān)系式是____,其定義域?yàn)開___.12、若關(guān)于x的方程x2+(2﹣m2)x+2m=0的兩根一個(gè)比1大一個(gè)比1小,則m的范圍是____13、已知偶函數(shù)f(x)在[0,+∞)單調(diào)遞減,f(2)=0,若f(x﹣1)>0,則x的取值范圍是____.14、△ABC中,cosA=cosB=則cosC=____.評(píng)卷人得分三、證明題(共6題,共12分)15、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.16、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.17、如圖;過(guò)圓O外一點(diǎn)D作圓O的割線DBA,DE與圓O切于點(diǎn)E,交AO的延長(zhǎng)線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點(diǎn);

(2)若CF=3,DE?EF=,求EF的長(zhǎng).18、已知ABCD四點(diǎn)共圓,AB與DC相交于點(diǎn)E,AD與BC交于F,∠E的平分線EX與∠F的平分線FX交于X,M、N分別是AC與BD的中點(diǎn),求證:(1)FX⊥EX;(2)FX、EX分別平分∠MFN與∠MEN.19、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.

求證:(1)∠CFD=∠CAD;

(2)EG<EF.20、已知G是△ABC的重心,過(guò)A、G的圓與BG切于G,CG的延長(zhǎng)線交圓于D,求證:AG2=GC?GD.評(píng)卷人得分四、計(jì)算題(共3題,共6分)21、若,則=____.22、如圖,∠1=∠B,AD?AC=5AE,DE=2,那么BC?AD=____.23、設(shè)集合A={5,log2(a+3)},集合B={a,b},若A∩B={2},求集合B.評(píng)卷人得分五、作圖題(共4題,共40分)24、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.25、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.26、畫出計(jì)算1++++的程序框圖.27、已知簡(jiǎn)單組合體如圖;試畫出它的三視圖(尺寸不做嚴(yán)格要求)

評(píng)卷人得分六、綜合題(共3題,共18分)28、已知二次函數(shù)y=x2-2mx-m2(m≠0)的圖象與x軸交于點(diǎn)A;B,它的頂點(diǎn)在以AB為直徑的圓上.

(1)證明:A;B是x軸上兩個(gè)不同的交點(diǎn);

(2)求二次函數(shù)的解析式;

(3)設(shè)以AB為直徑的圓與y軸交于點(diǎn)C,D,求弦CD的長(zhǎng).29、如圖1;△ABC與△EFA為等腰直角三角形,AC與AE重合,AB=EF=9,∠BAC=∠AEF=90°,固定△ABC,將△EFA繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)AF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)AE;AF(或它們的延長(zhǎng)線)分別交BC(或它的延長(zhǎng)線)于G、H點(diǎn),如圖2.

(1)問(wèn):在圖2中,始終與△AGC相似的三角形有____及____;

(2)設(shè)CG=x;BH=y,GH=z,求:

①y關(guān)于x的函數(shù)關(guān)系式;

②z關(guān)于x的函數(shù)關(guān)系式;(只要求根據(jù)第(1)問(wèn)的結(jié)論說(shuō)明理由)

(3)直接寫出:當(dāng)x為何值時(shí),AG=AH.30、已知直線l1:x-y+2=0;l2:x+y-4=0,兩條直線的交點(diǎn)為A,點(diǎn)B在l1上,點(diǎn)C在l2上,且,當(dāng)B,C變化時(shí),求過(guò)A,B,C三點(diǎn)的動(dòng)圓形成的區(qū)域的面積大小為____.參考答案一、選擇題(共6題,共12分)1、C【分析】【解析】

試題分析:因?yàn)椋?{0,4},所以={0,2,4};故選C.

考點(diǎn):集合的運(yùn)算.【解析】【答案】C2、B【分析】【解析】②④為真命題.【解析】【答案】B3、C【分析】【解答】解:由樣本的頻率分布直方圖知:

數(shù)據(jù)在區(qū)間(60;70)上的頻率是0.040×10=0.4;

故選:C.

【分析】根據(jù)頻率=組距×即可求出答案.4、A【分析】【解答】解:由三視圖知,該幾何體的直觀圖如圖所示:

該幾何體是一個(gè)球被切掉左上角的八分之一;

即該幾何體是八分之七個(gè)球;

球半徑R=2;

所以它的表面積是八分之七的球面面積和三個(gè)扇形面積之和;

即×4π×22+×π×22=17π;

故選A.

【分析】由三視圖畫出該幾何體的直觀圖,分析可得該幾何體是一個(gè)球被切掉左上角的八分之一,它的表面積是八分之七的球面面積和三個(gè)扇形面積之和,進(jìn)而得到答案.5、C【分析】解:∵函數(shù)f(x)=是(-∞;+∞)上的減函數(shù);

∴求得≤a<

故選:C.

利用分段函數(shù)以及函數(shù)的單調(diào)性;列出不等式組,求得a的范圍.

本題主要考查函數(shù)的單調(diào)性的性質(zhì),指數(shù)函數(shù)、一次函數(shù)的單調(diào)性,屬于基礎(chǔ)題.【解析】【答案】C6、B【分析】解:線段;圓、梯形都是平面圖形;且在有限范圍內(nèi),投影都可能為線段.長(zhǎng)方體是三維空間圖形,其投影不可能是線段;直線的投影,只能是直線或點(diǎn).

故選:B.

本題考查投影的概念;由于圖形的投影是一個(gè)線段,根據(jù)平行投影與中心投影的規(guī)則對(duì)選項(xiàng)中幾何體的投影情況進(jìn)行分析找出正確選項(xiàng).

本題考查平行投影及平行投影作圖法,解題的關(guān)鍵是熟練掌握并理解投影的規(guī)則,由投影的規(guī)則對(duì)選項(xiàng)作出判斷,得出正確選項(xiàng).【解析】【答案】B二、填空題(共8題,共16分)7、略

【分析】試題分析:當(dāng)x=10時(shí),執(zhí)行語(yǔ)句:然后判斷再執(zhí)行賦值語(yǔ)句:即第二次循環(huán):執(zhí)行語(yǔ)句:然后判斷再執(zhí)行賦值語(yǔ)句:即第三次循環(huán):執(zhí)行語(yǔ)句:然后判斷再執(zhí)行賦值語(yǔ)句:即第四次循環(huán):執(zhí)行語(yǔ)句:然后判斷直接輸出.故應(yīng)填.考點(diǎn):程序框圖;循環(huán)結(jié)構(gòu).【解析】【答案】.8、略

【分析】試題分析:從而設(shè)故當(dāng)最大值.考點(diǎn):1.向量線性運(yùn)算2.三角公式綜合應(yīng)用.【解析】【答案】9、略

【分析】【解析】

試題分析:根據(jù)題意,由于正方體中,面對(duì)角線與體對(duì)角線所成角利用線面垂直的判定定理和性質(zhì)定理,那么可知垂直于故等于

考點(diǎn):異面直線的所成的角。

點(diǎn)評(píng):主要是考查了異面直線的所成的角的求解,屬于基礎(chǔ)題?!窘馕觥俊敬鸢浮?0、略

【分析】【解析】略【解析】【答案】1811、略

【分析】【解析】略【解析】【答案】12、m>3或m<﹣1【分析】【解答】解:令f(x)=x2+(2﹣m2)x+2m;由題意,其圖象應(yīng)為。

故有f(1)<0,即1+2﹣m2+2m<0

整理得m2﹣2m﹣3>0

解得m>3或m<﹣1

故答案為m>3或m<﹣1

【分析】本題宜用相關(guān)函數(shù)的圖象進(jìn)行轉(zhuǎn)化,令f(x)=x2+(2﹣m2)x+2m,作出其圖象,從圖象上可心看出只要f(1)<0,即可保證x的方程x2+(2﹣m2)x+2m=0的兩根一個(gè)比1大一個(gè)比1?。?3、(﹣1,3)【分析】【解答】解:∵偶函數(shù)f(x)在[0;+∞)單調(diào)遞減,f(2)=0,∴不等式f(x﹣1)>0等價(jià)為f(x﹣1)>f(2);

即f(|x﹣1|)>f(2);

∴|x﹣1|<2;

解得﹣1<x<3;

故答案為:(﹣1;3)

【分析】根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系將不等式等價(jià)轉(zhuǎn)化為f(|x﹣1|)>f(2),即可得到結(jié)論.14、【分析】【解答】解:在△ABC中,由cosA=cosB=可知A,B均為銳角,則

sinB=

∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=.

故答案為:.

【分析】由已知求出sinA,sinB的值,由cosC=﹣cos(A+B),然后展開兩角和的余弦求解.三、證明題(共6題,共12分)15、略

【分析】【分析】首先作CD關(guān)于AB的對(duì)稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點(diǎn)共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對(duì)稱直線FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點(diǎn)共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.16、略

【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.17、略

【分析】【分析】要證E為中點(diǎn),可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長(zhǎng)需要借助相似,得出比例式,之間的關(guān)系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點(diǎn).

(2)解:連CE;則∠AEC=90°,設(shè)圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽R(shí)t△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=18、略

【分析】【分析】(1)在△FDC中;由三角形的外角性質(zhì)知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四邊形ABCD內(nèi)接于圓,則∠FDC=∠ABC,即∠FDC+∠EBC=180°,聯(lián)立①②,即可證得∠AFB+∠AED+2∠FAE=180°,而FX;EX分別是∠AFB和∠AED的角平分線,等量代換后可證得∠AFX+∠AEX+∠FAE=90°;可連接AX,此時(shí)發(fā)現(xiàn)∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可證得∠FXE是直角,即FX⊥EX;

(2)由已知易得∠AFX=∠BFX,欲證∠MFX=∠NFX,必須先證得∠AFM=∠BFN,可通過(guò)相似三角形來(lái)實(shí)現(xiàn);首先連接FM、FN,易證得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通過(guò)等量代換,可求得FA:FB=AM:BN,再加上由圓周角定理得到的∠FAM=∠FBN,即可證得△FAM∽△FBN,由此可得到∠AFM=∠BFN,進(jìn)一步可證得∠MFX=∠NFX,即FX平分∠MFN,同理可證得EX是∠MEN的角平分線.【解析】【解答】證明:(1)連接AX;

由圖知:∠FDC是△ACD的一個(gè)外角;

則有:∠FDC=∠FAE+∠AED;①

同理;得:∠EBC=∠FAE+∠AFB;②

∵四邊形ABCD是圓的內(nèi)接四邊形;

∴∠FDC=∠ABC;

又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③

①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);

由③;得:2∠FAE+(∠AED+∠AFB)=180°;

∵FX;EX分別是∠AFB、∠AED的角平分線;

∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:

2∠FAE+2(∠AFX+∠AEX)=180°;

即∠FAE+∠AFX+∠AEX=180°;

由三角形的外角性質(zhì)知:∠FXE=∠FAE+∠FAX+∠EAX;

故FXE=90°;即FX⊥EX.

(2)連接MF;FN;ME、NE;

∵∠FAC=∠FBD;∠DFB=∠CFA;

∴△FCA∽△FDB;

∴;

∵AC=2AM;BD=2BN;

∴;

又∵∠FAM=∠FBN;

∴△FAM∽△FBNA;得∠AFM=∠BFN;

又∵∠AFX=∠BFX;

∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;

同理可證得∠NEX=∠MEX;

故FX、EX分別平分∠MFN與∠MEN.19、略

【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;

(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,

∵AD⊥BC;DF⊥BE;

∴∠DFE=∠ADB;

∴∠BDF=∠DEF;

∵BD=DC;DE=AE;

∵∠BDF=∠DEF;∠EFD=∠BFD=90°;

∴△BDF∽△DEF;

∴=;

則=;

∵∠AEF=∠CDF;

∴△CDF∽△AEF;

∴∠CFD=∠AFE;

∴∠CFD+∠AEF=90°;

∴∠AFE+∠CFE=90°;

∴∠ADC=∠AFC=90°;

∴A;F、D、C四點(diǎn)共圓;

∴∠CFD=∠CAD.

(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;

∴∠EFG=∠ABD;

∵CF⊥AD;AD⊥BC;

∴F;N、D、G四點(diǎn)共圓;

∴∠EGF=∠AND;

∵∠AND>∠ABD;∠EFG=∠ABD;

∴∠EGF>∠EFG;

∴DG<EF.20、略

【分析】【分析】構(gòu)造以重心G為頂點(diǎn)的平行四邊形GBFC,并巧用A、D、F、C四點(diǎn)共圓巧證乘積.延長(zhǎng)GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點(diǎn)共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長(zhǎng)GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過(guò)A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點(diǎn)共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.四、計(jì)算題(共3題,共6分)21、略

【分析】【分析】先判斷a與1的大小,再去掉根號(hào)進(jìn)行計(jì)算即可.【解析】【解答】解:∵;

∴a<1;

∴=

=1-a

=1-2+

=-1.

故答案為-1.22、略

【分析】【分析】根據(jù)∠1=∠B,∠A=∠A判斷出△AED∽△ACB,根據(jù)相似三角形的性質(zhì),列出比例式:,則,可求得AD?AC=AE?AB,有根據(jù)AD?AC=5AE,求出AB=5,再根據(jù)△AED∽△ACB,列出比例式=,可求出AD?BC=AB?ED=5×2=10.【解析】【解答】解:∵∠1=∠B;∠A=∠A;

∴△AED∽△ACB;

∴;

即AD?AC=AE?AB;

又∵AD?AC=5AE;

可得AB=5;

又知=;

可得AD?BC=AB?ED=5×2=10.

故答案為10.23、A∩B={2};∴2∈A;

又∵A={5,log2(a+3)};

∴2=log2(a+3);∴4=a+3,∴a=1

又∵B={a,b}={1,b},且2∈B,∴b=2;

∴B={1;2}

【分析】【分析】由題意2∈A,2=log2(a+3),求出a,然后確定b,即可解得集合B五、作圖題(共4題,共40分)24、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過(guò)點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.25、略

【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.

∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過(guò)點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設(shè)管道的最省費(fèi)用為10000元.26、解:程序框圖如下:

【分析】【分析】根據(jù)題意,設(shè)計(jì)的程序框圖時(shí)需要分別設(shè)置一個(gè)累加變量S和一個(gè)計(jì)數(shù)變量i,以及判斷項(xiàng)數(shù)的判斷框.27、

解:幾何體的三視圖為:

【分析】【分析】利用三視圖的作法,畫出三視圖即可.六、綜合題(共3題,共18分)28、略

【分析】【分析】(1)求出根的判別式;然后根據(jù)根的判別式大于0即可判斷與x軸有兩個(gè)交點(diǎn);

(2)利用根與系數(shù)的關(guān)系求出AB的長(zhǎng)度;也就是圓的直徑,根據(jù)頂點(diǎn)公式求出頂點(diǎn)的坐標(biāo)得到圓的半徑,然后根據(jù)直徑是半徑的2倍列式即可求出m的值,再把m的值代入二次函數(shù)解析式便不難求出函數(shù)解析式;

(3)根據(jù)(2)中的結(jié)論,求出圓的半徑,弦心距,半弦,然后利用勾股定理列式求出半弦長(zhǎng),弦CD的長(zhǎng)等于半弦的2倍.【解析】【解答】解:(1)證明:∵y=x2-2mx-m2(m≠0);

∴a=1,b=-2m,c=-m2;

△=b2-4ac=(-2m)2-4×1×(-m2)=4m2+4m2=8m2;

∵m≠0;

∴△=8m2>0;

∴A;B是x軸上兩個(gè)不同的交點(diǎn);

(2)設(shè)AB點(diǎn)的坐標(biāo)分別為A(x1,0),B(x2;0);

則x1+x2=-=-=2m,x1?x2==-m2;

∴AB=|x1-x2|===2;

-=-=m;

==-2m2;

∴頂點(diǎn)坐標(biāo)是(m,-2m2);

∵拋物線的頂點(diǎn)在以AB為直徑的圓上;

∴AB=2(2m2);

即2=2(2m2);

解得m2=;

∴m=±;

∴y=x2-2×x-=x2-x-,或y=x2+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論