




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)廣東工商職業(yè)技術(shù)大學(xué)《機(jī)器學(xué)習(xí)原理》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類(lèi)的方法2、假設(shè)正在進(jìn)行一個(gè)情感分析任務(wù),使用深度學(xué)習(xí)模型。以下哪種神經(jīng)網(wǎng)絡(luò)架構(gòu)常用于情感分析?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM)D.以上都可以3、機(jī)器學(xué)習(xí)是一門(mén)涉及統(tǒng)計(jì)學(xué)、計(jì)算機(jī)科學(xué)和人工智能的交叉學(xué)科。它的目標(biāo)是讓計(jì)算機(jī)從數(shù)據(jù)中自動(dòng)學(xué)習(xí)規(guī)律和模式,從而能夠進(jìn)行預(yù)測(cè)、分類(lèi)、聚類(lèi)等任務(wù)。以下關(guān)于機(jī)器學(xué)習(xí)的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無(wú)監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)三大類(lèi)。監(jiān)督學(xué)習(xí)需要有標(biāo)注的訓(xùn)練數(shù)據(jù),無(wú)監(jiān)督學(xué)習(xí)則不需要標(biāo)注數(shù)據(jù)。那么,下列關(guān)于機(jī)器學(xué)習(xí)的說(shuō)法錯(cuò)誤的是()A.決策樹(shù)是一種監(jiān)督學(xué)習(xí)算法,可以用于分類(lèi)和回歸任務(wù)B.K均值聚類(lèi)是一種無(wú)監(jiān)督學(xué)習(xí)算法,用于將數(shù)據(jù)分成K個(gè)聚類(lèi)C.強(qiáng)化學(xué)習(xí)通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)最優(yōu)策略,適用于機(jī)器人控制等領(lǐng)域D.機(jī)器學(xué)習(xí)算法的性能只取決于算法本身,與數(shù)據(jù)的質(zhì)量和數(shù)量無(wú)關(guān)4、在一個(gè)信用評(píng)估模型中,我們需要根據(jù)用戶(hù)的個(gè)人信息、財(cái)務(wù)狀況等數(shù)據(jù)來(lái)判斷其信用風(fēng)險(xiǎn)。數(shù)據(jù)集存在類(lèi)別不平衡的問(wèn)題,即信用良好的用戶(hù)數(shù)量遠(yuǎn)遠(yuǎn)多于信用不良的用戶(hù)。為了解決這個(gè)問(wèn)題,以下哪種方法是不合適的?()A.對(duì)少數(shù)類(lèi)樣本進(jìn)行過(guò)采樣,增加其數(shù)量B.對(duì)多數(shù)類(lèi)樣本進(jìn)行欠采樣,減少其數(shù)量C.為不同類(lèi)別的樣本設(shè)置不同的權(quán)重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進(jìn)行訓(xùn)練,忽略類(lèi)別不平衡5、考慮一個(gè)圖像分割任務(wù),即將圖像分割成不同的區(qū)域或?qū)ο?。以下哪種方法常用于圖像分割?()A.閾值分割B.區(qū)域生長(zhǎng)C.邊緣檢測(cè)D.以上都是6、考慮在一個(gè)圖像識(shí)別任務(wù)中,需要對(duì)不同的物體進(jìn)行分類(lèi),例如貓、狗、汽車(chē)等。為了提高模型的準(zhǔn)確性和泛化能力,以下哪種數(shù)據(jù)增強(qiáng)技術(shù)可能是有效的()A.隨機(jī)旋轉(zhuǎn)圖像B.增加圖像的亮度C.對(duì)圖像進(jìn)行模糊處理D.減小圖像的分辨率7、在深度學(xué)習(xí)中,批量歸一化(BatchNormalization)的主要作用是()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型泛化能力D.以上都是8、在進(jìn)行模型選擇時(shí),我們通常會(huì)使用交叉驗(yàn)證來(lái)評(píng)估不同模型的性能。如果在交叉驗(yàn)證中,某個(gè)模型的性能波動(dòng)較大,這可能意味著()A.模型不穩(wěn)定,需要進(jìn)一步調(diào)整B.數(shù)據(jù)存在問(wèn)題C.交叉驗(yàn)證的設(shè)置不正確D.該模型不適合當(dāng)前任務(wù)9、想象一個(gè)圖像分類(lèi)的競(jìng)賽,要求在有限的計(jì)算資源和時(shí)間內(nèi)達(dá)到最高的準(zhǔn)確率。以下哪種優(yōu)化策略可能是最關(guān)鍵的?()A.數(shù)據(jù)增強(qiáng),通過(guò)對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換增加數(shù)據(jù)量,但可能引入噪聲B.超參數(shù)調(diào)優(yōu),找到模型的最優(yōu)參數(shù)組合,但搜索空間大且耗時(shí)C.模型壓縮,減少模型參數(shù)和計(jì)算量,如剪枝和量化,但可能損失一定精度D.集成學(xué)習(xí),組合多個(gè)模型的預(yù)測(cè)結(jié)果,提高穩(wěn)定性和準(zhǔn)確率,但訓(xùn)練成本高10、想象一個(gè)圖像識(shí)別的任務(wù),需要對(duì)大量的圖片進(jìn)行分類(lèi),例如區(qū)分貓和狗的圖片。為了達(dá)到較好的識(shí)別效果,同時(shí)考慮計(jì)算資源和訓(xùn)練時(shí)間的限制。以下哪種方法可能是最合適的?()A.使用傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如基于特征工程的支持向量機(jī),需要手動(dòng)設(shè)計(jì)特征,但計(jì)算量相對(duì)較小B.采用淺層的神經(jīng)網(wǎng)絡(luò),如只有一到兩個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò),訓(xùn)練速度較快,但可能無(wú)法捕捉復(fù)雜的圖像特征C.運(yùn)用深度卷積神經(jīng)網(wǎng)絡(luò),如ResNet架構(gòu),能夠自動(dòng)學(xué)習(xí)特征,識(shí)別效果好,但計(jì)算資源需求大,訓(xùn)練時(shí)間長(zhǎng)D.利用遷移學(xué)習(xí),將在大規(guī)模圖像數(shù)據(jù)集上預(yù)訓(xùn)練好的模型,如Inception模型,微調(diào)應(yīng)用到當(dāng)前任務(wù),節(jié)省訓(xùn)練時(shí)間和計(jì)算資源11、某研究需要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行降維,同時(shí)希望保留數(shù)據(jù)的主要特征。以下哪種降維方法在這種情況下可能較為合適?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-分布隨機(jī)鄰域嵌入(t-SNE)D.自編碼器12、假設(shè)要為一個(gè)智能推薦系統(tǒng)選擇算法,根據(jù)用戶(hù)的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過(guò)濾的推薦算法,利用用戶(hù)之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動(dòng)和數(shù)據(jù)稀疏問(wèn)題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶(hù)的偏好匹配推薦,但對(duì)新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過(guò)濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過(guò)特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過(guò)與用戶(hù)的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢13、某研究團(tuán)隊(duì)正在開(kāi)發(fā)一個(gè)用于醫(yī)療圖像診斷的機(jī)器學(xué)習(xí)模型,需要提高模型對(duì)小病變的檢測(cè)能力。以下哪種方法可以嘗試?()A.增加數(shù)據(jù)增強(qiáng)的強(qiáng)度B.使用更復(fù)雜的模型架構(gòu)C.引入注意力機(jī)制D.以上方法都可以14、在進(jìn)行模型壓縮時(shí),以下關(guān)于模型壓縮方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.剪枝是指刪除模型中不重要的權(quán)重或神經(jīng)元,減少模型的參數(shù)量B.量化是將模型的權(quán)重進(jìn)行低精度表示,如從32位浮點(diǎn)數(shù)轉(zhuǎn)換為8位整數(shù)C.知識(shí)蒸餾是將復(fù)雜模型的知識(shí)轉(zhuǎn)移到一個(gè)較小的模型中,實(shí)現(xiàn)模型壓縮D.模型壓縮會(huì)導(dǎo)致模型性能?chē)?yán)重下降,因此在實(shí)際應(yīng)用中應(yīng)盡量避免使用15、在一個(gè)分類(lèi)問(wèn)題中,如果類(lèi)別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹(shù)C.樸素貝葉斯D.隨機(jī)森林16、假設(shè)正在開(kāi)發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶(hù)推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶(hù)的歷史購(gòu)買(mǎi)記錄、瀏覽行為、搜索關(guān)鍵詞等信息來(lái)預(yù)測(cè)用戶(hù)的興趣和需求。在這個(gè)過(guò)程中,特征工程起到了關(guān)鍵作用。如果要將用戶(hù)的購(gòu)買(mǎi)記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶(hù)購(gòu)買(mǎi)每種商品的頻率B.對(duì)用戶(hù)購(gòu)買(mǎi)的商品進(jìn)行分類(lèi),并計(jì)算各類(lèi)別的比例C.直接將用戶(hù)購(gòu)買(mǎi)的商品名稱(chēng)作為特征輸入模型D.計(jì)算用戶(hù)購(gòu)買(mǎi)商品的時(shí)間間隔和購(gòu)買(mǎi)周期17、某機(jī)器學(xué)習(xí)項(xiàng)目需要對(duì)大量的圖像進(jìn)行分類(lèi),但是計(jì)算資源有限。以下哪種技術(shù)可以在不顯著降低性能的前提下減少計(jì)算量?()A.模型壓縮B.數(shù)據(jù)量化C.遷移學(xué)習(xí)D.以上技術(shù)都可以考慮18、在一個(gè)監(jiān)督學(xué)習(xí)問(wèn)題中,我們需要評(píng)估模型在新數(shù)據(jù)上的泛化能力。如果數(shù)據(jù)集較小且存在類(lèi)別不平衡的情況,以下哪種評(píng)估指標(biāo)需要特別謹(jǐn)慎地使用?()A.準(zhǔn)確率(Accuracy)B.召回率(Recall)C.F1值D.均方誤差(MSE)19、在機(jī)器學(xué)習(xí)中,監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。假設(shè)我們有一個(gè)數(shù)據(jù)集,包含了房屋的面積、房間數(shù)量、地理位置等特征,以及對(duì)應(yīng)的房?jī)r(jià)。如果我們想要使用監(jiān)督學(xué)習(xí)算法來(lái)預(yù)測(cè)新房屋的價(jià)格,以下哪種算法可能是最合適的()A.K-Means聚類(lèi)算法B.決策樹(shù)算法C.主成分分析(PCA)D.獨(dú)立成分分析(ICA)20、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以21、在一個(gè)異常檢測(cè)問(wèn)題中,例如檢測(cè)網(wǎng)絡(luò)中的異常流量,數(shù)據(jù)通常呈現(xiàn)出正常樣本遠(yuǎn)遠(yuǎn)多于異常樣本的情況。如果使用傳統(tǒng)的監(jiān)督學(xué)習(xí)算法,可能會(huì)因?yàn)閿?shù)據(jù)不平衡而導(dǎo)致模型對(duì)異常樣本的檢測(cè)能力不足。以下哪種方法更適合解決這類(lèi)異常檢測(cè)問(wèn)題?()A.構(gòu)建一個(gè)二分類(lèi)模型,將數(shù)據(jù)分為正常和異常兩類(lèi)B.使用無(wú)監(jiān)督學(xué)習(xí)算法,如基于密度的聚類(lèi)算法,識(shí)別異常點(diǎn)C.對(duì)數(shù)據(jù)進(jìn)行平衡處理,如復(fù)制異常樣本,使正常和異常樣本數(shù)量相等D.以上方法都不適合,異常檢測(cè)問(wèn)題無(wú)法通過(guò)機(jī)器學(xué)習(xí)解決22、在機(jī)器學(xué)習(xí)中,數(shù)據(jù)預(yù)處理是非常重要的環(huán)節(jié)。以下關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法中,錯(cuò)誤的是:數(shù)據(jù)預(yù)處理包括數(shù)據(jù)清洗、數(shù)據(jù)歸一化、數(shù)據(jù)標(biāo)準(zhǔn)化等步驟。目的是提高數(shù)據(jù)的質(zhì)量和可用性。那么,下列關(guān)于數(shù)據(jù)預(yù)處理的說(shuō)法錯(cuò)誤的是()A.數(shù)據(jù)清洗可以去除數(shù)據(jù)中的噪聲和異常值B.數(shù)據(jù)歸一化將數(shù)據(jù)映射到[0,1]區(qū)間,便于不同特征之間的比較C.數(shù)據(jù)標(biāo)準(zhǔn)化將數(shù)據(jù)的均值和標(biāo)準(zhǔn)差調(diào)整為特定的值D.數(shù)據(jù)預(yù)處理對(duì)模型的性能影響不大,可以忽略23、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過(guò)程中,損失函數(shù)的值一直沒(méi)有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過(guò)高B.模型過(guò)于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能24、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對(duì)短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對(duì)較弱C.基于詞向量的聚類(lèi)方法,如K-Means聚類(lèi),但依賴(lài)于詞向量的質(zhì)量和表示D.層次聚類(lèi)方法,能夠展示主題的層次結(jié)構(gòu),但計(jì)算復(fù)雜度較高25、在一個(gè)推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性?xún)?yōu)化,選擇不同類(lèi)型的物品進(jìn)行推薦,但可能忽略用戶(hù)偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶(hù)反饋動(dòng)態(tài)調(diào)整26、在使用深度學(xué)習(xí)進(jìn)行圖像分類(lèi)時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來(lái)增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過(guò)擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過(guò)度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無(wú)關(guān)的特征,影響模型性能27、假設(shè)正在開(kāi)發(fā)一個(gè)用于推薦系統(tǒng)的深度學(xué)習(xí)模型,需要考慮用戶(hù)的短期興趣和長(zhǎng)期興趣。以下哪種模型結(jié)構(gòu)可以同時(shí)捕捉這兩種興趣?()A.注意力機(jī)制與循環(huán)神經(jīng)網(wǎng)絡(luò)的結(jié)合B.多層感知機(jī)與卷積神經(jīng)網(wǎng)絡(luò)的組合C.生成對(duì)抗網(wǎng)絡(luò)與自編碼器的融合D.以上模型都有可能28、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車(chē)輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)29、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專(zhuān)門(mén)用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練30、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類(lèi)問(wèn)題,我們需要選擇合適的算法來(lái)提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.樸素貝葉斯二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)分析機(jī)器學(xué)習(xí)中的特征工程方法及其在模型性能提升中的作用。特征工程是機(jī)器學(xué)習(xí)中的重要環(huán)節(jié),它可以通過(guò)提取、選擇和轉(zhuǎn)換特征來(lái)提高模型的性能。介紹常見(jiàn)的特征工程方法,并討論其在實(shí)際應(yīng)用中的作用。2、(本題5分)詳細(xì)闡述決策樹(shù)算法的構(gòu)建過(guò)程、分裂準(zhǔn)則(如信息增益、基尼指數(shù))的選擇依據(jù)。討論決策樹(shù)容易出現(xiàn)過(guò)擬合的原因,以及常見(jiàn)的剪枝策略和效果。3、(本題5分)結(jié)合實(shí)際應(yīng)用,論述機(jī)器學(xué)習(xí)在物流服務(wù)質(zhì)量提升中的作用。分析客戶(hù)滿(mǎn)意度評(píng)估、服務(wù)質(zhì)量監(jiān)測(cè)、投訴處理等方面的機(jī)器學(xué)習(xí)技術(shù)和應(yīng)用前景。4、(本題5分)詳細(xì)闡述在圖像檢索任務(wù)中,機(jī)器學(xué)習(xí)算法在特征提取和相似性度量方面的應(yīng)用。分析如何提高圖像檢索的準(zhǔn)確性和效率。5、(本題5分)論述機(jī)器學(xué)習(xí)在金融市場(chǎng)預(yù)測(cè)中的挑戰(zhàn)與機(jī)遇。金融市場(chǎng)具有復(fù)雜性和不確定性,機(jī)器學(xué)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江藥科職業(yè)大學(xué)《中醫(yī)藥學(xué)概論(1)》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼寧省阜新市二中2024-2025學(xué)年高三教學(xué)情況調(diào)研(一)化學(xué)試題含解析
- 湖南省師大附中2025年高三下學(xué)期三校五測(cè)歷史試題試卷含解析
- 四川省遂寧市蓬溪縣重點(diǎn)中學(xué)2024-2025學(xué)年第二學(xué)期統(tǒng)一檢測(cè)試題題初三化學(xué)試題試卷含解析
- 浙江理工大學(xué)科技與藝術(shù)學(xué)院《發(fā)酵工程及實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西管理職業(yè)學(xué)院《歷史學(xué)課程與教學(xué)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西省撫州市臨川達(dá)標(biāo)名校2025屆初三下學(xué)期期末調(diào)研測(cè)試生物試題文試卷含解析
- 湖南石油化工職業(yè)技術(shù)學(xué)院《高級(jí)英語(yǔ)寫(xiě)作》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江省溫州市育才高中市級(jí)名校2025年初三年級(jí)第三次月考英語(yǔ)試題含答案
- 神木職業(yè)技術(shù)學(xué)院《網(wǎng)絡(luò)商務(wù)策劃與創(chuàng)新實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- DB37-T 4099-2020 質(zhì)子交換膜燃料電池發(fā)動(dòng)機(jī)故障分類(lèi)、遠(yuǎn)程診斷及處理方法
- 中國(guó)石化加油站視覺(jué)形象(vi)標(biāo)準(zhǔn)手冊(cè)
- 光伏組件EVA剝離強(qiáng)度的不確定度評(píng)定報(bào)告
- 危大工程巡視檢查記錄
- 生育保險(xiǎn)待遇申請(qǐng)表
- 長(zhǎng)安汽車(chē)在線測(cè)評(píng)題目答案-
- 80m3液化石油儲(chǔ)罐結(jié)構(gòu)設(shè)計(jì)及焊接工藝設(shè)計(jì)
- 輸電線路跨越河流施工方案設(shè)計(jì)
- 品管圈-主題選定課件
- 第三章基于數(shù)據(jù)驅(qū)動(dòng)的故障診斷方法ppt課件
- T∕CAAA 030-2020 澳洲白綿羊種羊
評(píng)論
0/150
提交評(píng)論