




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬科版高二數(shù)學下冊階段測試試卷827考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共7題,共14分)1、函數(shù)在定義域內可導,若且當時,設則A.B.C.D.2、用數(shù)字0,1,2,3組成數(shù)字可以重復的四位數(shù),其中有且只有一個數(shù)字出現(xiàn)兩次的四位數(shù)的個數(shù)為()(A)144(B)120(C)108(D)723、設隨機變量~又則和的值分別是()A.和B.和C.和D.和4、如圖的程序語句輸出的結果S為()A.19B.17C.15D.135、【題文】將一個總體為A,B,C三層后,其個體數(shù)之比為4:2:1,若用分層抽樣的方法抽取容量為140的樣本,則應從B層中抽取的個體數(shù)為()A.20B.30C.40D.606、在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,BC中點,則異面直線EF與AB1所成角的余弦值為()A.B.C.D.7、“a>1
”是“a2>a
成立”的(
)
A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件評卷人得分二、填空題(共5題,共10分)8、將參數(shù)方程化為普通方程是____.9、【題文】已知且則________.10、【題文】計算:=________11、【題文】數(shù)列的一個通項公式可以表示為=___________.12、1dx=______.(x+1)dx=______.評卷人得分三、作圖題(共5題,共10分)13、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
14、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最小.(如圖所示)15、已知,A,B在直線l的兩側,在l上求一點,使得PA+PB最?。ㄈ鐖D所示)16、著名的“將軍飲馬”問題:有一位將軍騎著馬要從A地走到B地;但途中要到水邊喂馬喝一次水,則將軍怎樣走最近?
17、A是銳角MON內部任意一點,在∠MON的兩邊OM,ON上各取一點B,C,組成三角形,使三角形周長最?。ㄈ鐖D所示)評卷人得分四、計算題(共4題,共8分)18、如圖,正三角形ABC的邊長為2,M是BC邊上的中點,P是AC邊上的一個動點,求PB+PM的最小值.19、已知a為實數(shù),求導數(shù)20、求證:ac+bd≤?.21、在(1+x)6(1+y)4的展開式中,記xmyn項的系數(shù)為f(m,n),求f(3,0)+f(2,1)+f(1,2)+f(0,3)的值.評卷人得分五、綜合題(共4題,共16分)22、如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過AB,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.
(1)求拋物線的解析式;
(2)求當AD+CD最小時點D的坐標;
(3)以點A為圓心;以AD為半徑作⊙A.
①證明:當AD+CD最小時;直線BD與⊙A相切;
②寫出直線BD與⊙A相切時,D點的另一個坐標:____.23、如圖,在直角坐標系中,點A,B,C的坐標分別為(-1,0),(3,0),(0,3),過AB,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.
(1)求拋物線的解析式;
(2)求當AD+CD最小時點D的坐標;
(3)以點A為圓心;以AD為半徑作⊙A.
①證明:當AD+CD最小時;直線BD與⊙A相切;
②寫出直線BD與⊙A相切時,D點的另一個坐標:____.24、(2009?新洲區(qū)校級模擬)如圖,已知直角坐標系內有一條直線和一條曲線,這條直線和x軸、y軸分別交于點A和點B,且OA=OB=1.這條曲線是函數(shù)y=的圖象在第一象限的一個分支,點P是這條曲線上任意一點,它的坐標是(a、b),由點P向x軸、y軸所作的垂線PM、PN,垂足是M、N,直線AB分別交PM、PN于點E、F.則AF?BE=____.25、已知等差數(shù)列{an}的前n項和為Sn,且a1=1,S3=0.參考答案一、選擇題(共7題,共14分)1、D【分析】【解析】【答案】D2、C【分析】【解析】試題分析:用數(shù)字0,1,2,3組成數(shù)字可以重復的四位數(shù),如果重復數(shù)字為0,則需要從1,2,3中再選取兩個不同的數(shù)字,且0不能放在首位,故首位應從兩個非零數(shù)字中選擇一個,而另一個非零數(shù)字可從剩余的三個數(shù)位中選擇一位進行放置,則共有:=3×2×3=18個;如果重復數(shù)字不為0,但抽取的數(shù)字含0,則需要從1,2,3中先選取一個數(shù)字重復,再選取一個不重復,從后三位中選擇一位放置0,再從剩余的三位中選擇一位放置非重復數(shù)字,故有=54種;如果重復數(shù)字不為0,但抽取的數(shù)字不含0,則需要從1,2,3中先選取一個數(shù)字用做重復,再選取兩個用做不重復放置時,應先從四位中先后選擇二位放置非重復數(shù)字,故有=36種;故有且只有一個數(shù)字出現(xiàn)兩次的四位數(shù)的個數(shù)為108個,故選C.考點:簡單排列組合應用問題,計數(shù)原理?!窘馕觥俊敬鸢浮緾3、C【分析】【解析】試題分析:因為隨機變量~所以所以==考點:二項分布;數(shù)學期望;方差?!窘馕觥俊敬鸢浮緾4、D【分析】【解析】試題分析:本題所給的是一個循環(huán)結構的框圖,由圖可以看出,此是一個求正整數(shù)前6個數(shù)和的算法框圖,由公式計算出S的值,選出正確答案由題意,如圖,此循環(huán)程序共運行6次,依次得到S=5,i=3;再循環(huán)得到S=9,i=5;得到S=13,i=7;此時終止循環(huán)得到結論為13,選D.7,9,11,13,15,即S代表的是正整數(shù)前6個數(shù)的和,故S=1+2+3++6=21,故選D.考點:本題主要考查了程序框圖的理解和簡單的運用?!窘馕觥俊敬鸢浮緿5、D【分析】【解析】略【解析】【答案】D6、A【分析】【解答】解:如圖,將EF平移到AC,連結B1C,則∠B1AC為異面直線AB1與EF所成的角;
∵三角形B1AC為等邊三角形;
∴故異面直線AB1與EF所成的角60°;
∴cos∠B1AC=.
故選A.
【分析】先通過平移將兩條異面直線平移到同一個起點A,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.7、A【分析】解:由a2>a
得a>1
或a<0
即“a>1
”是“a2>a
成立”充分不必要條件;
故選:A
根據(jù)不等式關系;結合充分條件和必要條件的定義進行判斷即可.
本題主要考查充分條件和必要條件的判斷,比較基礎.【解析】A
二、填空題(共5題,共10分)8、略
【分析】
由圓的參數(shù)方程可得.
.
故答案為:.
【解析】【答案】由參數(shù)方程可得結合sin2θ+cos2θ=1可轉化.
9、略
【分析】【解析】
【解析】【答案】10、略
【分析】【解析】略【解析】【答案】11、略
【分析】【解析】略【解析】【答案】12、略
【分析】解:1dx=x|=2;(x+1)dx==3;
故答案為:2;3;
分別求出被積函數(shù)的原函數(shù);計算求值即可.
本題考查了定積分的計算;正確求出被積函數(shù)的原函數(shù)是關鍵.【解析】2;3三、作圖題(共5題,共10分)13、略
【分析】【分析】根據(jù)軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據(jù)兩點之間線段最短的性質可知;C點即為所求.
14、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.15、略
【分析】【分析】顯然根據(jù)兩點之間,線段最短,連接兩點與直線的交點即為所求作的點.【解析】【解答】解:連接兩點與直線的交點即為所求作的點P;
這樣PA+PB最?。?/p>
理由是兩點之間,線段最短.16、略
【分析】【分析】根據(jù)軸對稱的性質作出B點與河面的對稱點B′,連接AB′,AB′與河面的交點C即為所求.【解析】【解答】解:作B點與河面的對稱點B′;連接AB′,可得到馬喝水的地方C;
如圖所示;
由對稱的性質可知AB′=AC+BC;
根據(jù)兩點之間線段最短的性質可知;C點即為所求.
17、略
【分析】【分析】作出A關于OM的對稱點A',關于ON的A對稱點A'',連接A'A'',根據(jù)兩點之間線段最短即可判斷出使三角形周長最小的A、B的值.【解析】【解答】解:作A關于OM的對稱點A';關于ON的A對稱點A'',與OM;ON相交于B、C,連接ABC即為所求三角形.
證明:∵A與A'關于OM對稱;A與A″關于ON對稱;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根據(jù)兩點之間線段最短,A'A''為△ABC的最小值.四、計算題(共4題,共8分)18、略
【分析】【分析】作點B關于AC的對稱點E,連接EP、EB、EM、EC,則PB+PM=PE+PM,因此EM的長就是PB+PM的最小值.【解析】【解答】解:如圖;作點B關于AC的對稱點E,連接EP;EB、EM、EC;
則PB+PM=PE+PM;
因此EM的長就是PB+PM的最小值.
從點M作MF⊥BE;垂足為F;
因為BC=2;
所以BM=1,BE=2=2.
因為∠MBF=30°;
所以MF=BM=,BF==,ME==.
所以PB+PM的最小值是.19、解:【分析】【分析】由原式得∴20、證明:∵(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,∴(a2+b2)?(c2+d2)≥(ac+bd)2;
∴|ac+bd|≤?
∴ac+bd≤?【分析】【分析】作差(a2+b2)?(c2+d2)﹣(ac+bd)2=(ad﹣bc)2≥0,即可證明.21、解:(1+x)6(1+y)4的展開式中,含x3y0的系數(shù)是:C63C40=20.f(3,0)=20;含x2y1的系數(shù)是C62C41=60;f(2,1)=60;
含x1y2的系數(shù)是C61C42=36;f(1,2)=36;
含x0y3的系數(shù)是C60C43=4;f(0,3)=4;
∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120【分析】【分析】由題意依次求出x3y0,x2y1,x1y2,x0y3,項的系數(shù),求和即可.五、綜合題(共4題,共16分)22、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點D,根據(jù)拋物線對稱軸的性質,點B與點A關于直線l對稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點;
設出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點D的坐標.
(3)由(2)可知,當AD+CD最短時,D在直線BC上,由于已知A,B,C,D四點坐標,根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點D與現(xiàn)在的點D關于x軸對稱,所以另一點D的坐標為(1,-2).【解析】【解答】解:
(1)設拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點D.
∵點B與點A關于直線l對稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點之間;線段最短”的原理可知:
此時AD+CD最小;點D的位置即為所求.(5分)
設直線BC的解析式為y=kx+b;
由直線BC過點(3;0),(0,3);
得
解這個方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點D的坐標為(1;2).(7分)
說明:用相似三角形或三角函數(shù)求點D的坐標也可;答案正確給(2分).
(3)①連接AD.設直線l與x軸的交點記為點E.
由(2)知:當AD+CD最小時;點D的坐標為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD與⊙A相切.(9分)
②∵另一點D與D(1;2)關于x軸對稱;
∴D(1,-2).(11分)23、略
【分析】【分析】(1)由待定系數(shù)法可求得拋物線的解析式.
(2)連接BC;交直線l于點D,根據(jù)拋物線對稱軸的性質,點B與點A關于直線l對稱,∴AD=BD.
∴AD+CD=BD+CD;由“兩點之間,線段最短”的原理可知:D在直線BC上AD+CD最短,所以D是直線l與直線BC的交點;
設出直線BC的解析式為y=kx+b;可用待定系數(shù)法求得BC直線的解析式,故可求得BC與直線l的交點D的坐標.
(3)由(2)可知,當AD+CD最短時,D在直線BC上,由于已知A,B,C,D四點坐標,根據(jù)線段之間的長度,可以求出△ABD是直角三角形,即BC與圓相切.由于AB⊥l,故由垂徑定理知及切線長定理知,另一點D與現(xiàn)在的點D關于x軸對稱,所以另一點D的坐標為(1,-2).【解析】【解答】解:
(1)設拋物線的解析式為y=a(x+1)(x-3).(1分)
將(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴拋物線的解析式為y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)連接BC;交直線l于點D.
∵點B與點A關于直線l對稱;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“兩點之間;線段最短”的原理可知:
此時AD+CD最小;點D的位置即為所求.(5分)
設直線BC的解析式為y=kx+b;
由直線BC過點(3;0),(0,3);
得
解這個方程組,得
∴直線BC的解析式為y=-x+3.(6分)
由(1)知:對稱軸l為;即x=1.
將x=1代入y=-x+3;得y=-1+3=2.
∴點D的坐標為(1;2).(7分)
說明:用相似三角形或三角函數(shù)求點D的坐標也可;答案正確給(2分).
(3)①連接AD.設直線l與x軸的交點記為點E.
由(2)知:當AD+CD最小時;點D的坐標為(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 植樹節(jié)主題班會72
- 麗水2024年浙江麗水遂昌縣招聘專職社區(qū)工作者17人筆試歷年參考題庫附帶答案詳解
- 二零二五離婚房產歸女方協(xié)議
- 二零二五委托人二手房買賣合同范例
- 任職合同書范文模板
- 業(yè)績考核協(xié)議書
- 工聘用合同二零二五年
- 離婚后房產分割協(xié)議書范例
- 人教版數(shù)學三年級下冊-6.3練習十五-教學課件
- 消防安全課教學課件
- 人口社會學(第二版) 課件 第八章 婚姻家庭
- 露天礦山邊坡穩(wěn)定性分析與防治措施
- 農產品質量安全農產品質量安全風險分析
- 25題電控工程師崗位常見面試問題含HR問題考察點及參考回答
- 基于深度學習的文本生成技術
- 新人教版高中英語必修二課文原文及翻譯
- 家長要求學校換老師的申請書
- 生產異常報告單
- 腦梗死恢復期康復臨床路徑
- 函授小學教育畢業(yè)論文-函授小學教育畢業(yè)論文題目
- 小升初語文閱讀考點 專題六 寫景狀物類文章閱讀指導 課件 人教統(tǒng)編版
評論
0/150
提交評論