版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬科新版高一數(shù)學(xué)下冊階段測試試卷982考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、已知函數(shù)的圖象恒過定點A,若點A也在函數(shù)的圖象上,則()A.B.C.D.2、【題文】在中,已知則為()A.等邊三角形B.等腰直角三角形C.銳角非等邊三角形D.鈍角三角形3、【題文】m和n是分別在兩個互相垂直的面α、β內(nèi)的兩條直線,α與β交于l,m和n與l既不垂直,也不平行,那么m和n的位置關(guān)系是()A.可能垂直,但不可能平行B.可能平行,但不可能垂直C.可能垂直,也可能平行D.既不可能垂直,也不可能平行4、現(xiàn)有60位學(xué)生,編號為1至60,若從中抽取6人,則用系統(tǒng)抽樣確定所抽的編號為()A.2,14,26,38,42,56B.5,8,31,36,48,54C.3,13,23,33,43,53D.5,10,15,20,25,305、已知函數(shù)y=f(x)的周期為2,當(dāng)時,f(x)=(x-1)2,如果g(x)=f(x)-log5|x-1|,則函數(shù)y=g(x)的所有零點之和為()A.2B.4C.6D.8評卷人得分二、填空題(共8題,共16分)6、在等比數(shù)列{an}中,若a9?a11=4,則數(shù)列前19項之和為____.7、如圖所示,用一根長為4米的木料制成窗框,設(shè)窗框的寬為x米,長為y米(y>x).若不計木料的厚度與損耗,則將窗的面積S表示成寬x的函數(shù)S(x)為____.
8、【題文】如圖;一船在海上自西向東航行,在A處測得某島M的方位角為北偏東α角,前進(jìn)mkm后在B處測得該島的方位角為北偏東β角,已知該島周圍nkm范圍內(nèi)(包括邊界)有暗礁,現(xiàn)該船繼續(xù)東行.當(dāng)α與β滿足條件________時,該船沒有觸礁危險.
9、【題文】將集合{|且}中的元素按上小下大,左小右大的順序排成如圖的三角形數(shù)表,將數(shù)表中位于第行第列的數(shù)記為(),則=____.10、已知f(2x)=x+1,則f(x)=____.11、函數(shù)的單調(diào)增區(qū)間是______.12、若A(1,0),B(0,-1),則||=______.13、將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下:0001,0002,0003,,1000,打算從中抽取一個容量為50的樣本,按系統(tǒng)抽樣的方法分成50個部分,如果第一部分編號為0001,0002,0003,,0020,第一部分隨機抽取一個號碼為0015,則抽取的第10個號碼為______.評卷人得分三、作圖題(共8題,共16分)14、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.15、如圖A、B兩個村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設(shè)管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設(shè)管道的費用最省,并求出其費用.16、作出下列函數(shù)圖象:y=17、作出函數(shù)y=的圖象.18、畫出計算1++++的程序框圖.19、以下是一個用基本算法語句編寫的程序;根據(jù)程序畫出其相應(yīng)的程序框圖.
20、請畫出如圖幾何體的三視圖.
21、繪制以下算法對應(yīng)的程序框圖:
第一步;輸入變量x;
第二步,根據(jù)函數(shù)f(x)=
對變量y賦值;使y=f(x);
第三步,輸出變量y的值.評卷人得分四、證明題(共2題,共14分)22、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.23、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.評卷人得分五、計算題(共3題,共9分)24、+2.25、(2000?臺州)如圖,已知AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC,若OA=2,且AD+OC=6,則CD=____.26、計算:.評卷人得分六、綜合題(共4題,共24分)27、如圖,△ABC中,AB=5,BC=6,BD=BC;AD⊥BC于D,E為AB延長線上的一點,且EC交AD的延長線于F.
(1)設(shè)BE為x;DF為y,試用x的式子表示y.
(2)當(dāng)∠ACE=90°時,求此時x的值.28、已知點A(-2,0),點B(0,2),點C在第二、四象限坐標(biāo)軸夾角平分線上,∠BAC=60°,那么點C的坐標(biāo)為____.29、已知:甲;乙兩車分別從相距300(km)的M、N兩地同時出發(fā)相向而行;其中甲到達(dá)N地后立即返回,圖1、圖2分別是它們離各自出發(fā)地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象.
(1)試求線段AB所對應(yīng)的函數(shù)關(guān)系式;并寫出自變量的取值范圍;
(2)當(dāng)它們行駛到與各自出發(fā)地距離相等時,用了(h);求乙車的速度;
(3)在(2)的條件下,求它們在行駛的過程中相遇的時間.30、若反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象都經(jīng)過一點A(a,2),另有一點B(2,0)在一次函數(shù)y=kx+b的圖象上.
(1)寫出點A的坐標(biāo);
(2)求一次函數(shù)y=kx+b的解析式;
(3)過點A作x軸的平行線,過點O作AB的平行線,兩線交于點P,求點P的坐標(biāo).參考答案一、選擇題(共5題,共10分)1、A【分析】試題分析:由題可知,函數(shù)的圖像恒過點A(-2,-1),將A(-2,-1)代入到函數(shù)中,得到因此所以考點:對數(shù)的基本運算【解析】【答案】A2、B【分析】【解析】
試題分析:由已知及正弦定理,得
.由得
.為等腰直角三角形;故選B.
考點:綜合應(yīng)用正余弦定理及三角恒等變換判斷三角形的形狀.【解析】【答案】B.3、D【分析】【解析】
。
若則又這與不平行相矛盾;若在上取一點做垂足為又
這與不垂直相矛盾.故選D【解析】【答案】D4、C【分析】【解答】解:在A中;由于樣本間隔不相等,故A錯誤;
在B中;由于樣本間隔不相等,故B錯誤;
在C中;由于樣本間隔相等,且樣本均勻分布在總體中,故C是用系統(tǒng)抽樣確定所抽的編號,故C正確;
在D中;由于樣本間隔相等,但樣本沒有均勻分布在總體中,故D錯誤.
故選:C.
【分析】系統(tǒng)抽樣所確定的編號間隔相等,且編號均勻分布在總體中.5、D【分析】【解答】當(dāng)時,又函數(shù)的周期為2,所以做出函數(shù)的圖像.圖象關(guān)于y軸對稱的偶函數(shù)y=log5|x|向右平移一個單位得到函數(shù)y=log5|x-1|,則y=log5|x-1|關(guān)于x=1對稱,可作出函數(shù)y=log5|x-1|的圖象。函數(shù)的零點即圖像交點的橫坐標(biāo),由圖可知,共有8個交點,且它們關(guān)于直線x=1對稱,所以函數(shù)的所有零點之和為8.
【分析】本題主要考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確作出函數(shù)的圖像是解題的關(guān)鍵。二、填空題(共8題,共16分)6、略
【分析】
a9?a11=4?a10=±2(舍去負(fù)值,∵an>0)∴a10=2
∴
故答案為-19
【解析】【答案】由條件a9?a11=4,利用等比數(shù)列的通項,可知a10=2,從而可求數(shù)列前19項之和.
7、略
【分析】
要將窗的面積S表示成寬x的函數(shù);
在這個窗戶中有四個窗欞是寬;三個長度是長;
∴當(dāng)寬是x時,長是
∴s=
∵7x<4;
∴x<
故答案為:s=x
【解析】【答案】根據(jù)所給的圖形;看出和寬一樣長的有4個窗欞,和長一樣長的有3個窗欞,表示出窗戶的面積,寫出自變量的定義域.
8、略
【分析】【解析】∠MAB=90°-α,∠MBC=90°-β=∠MAB+∠AMB=90°-α+∠AMB,∴∠AMB=α-β.由題可知,在△ABM中,根據(jù)正弦定理得解得BM=要使船沒有觸礁危險,需要BMsin(90°-β)=>n,所以α與β滿足mcosαcosβ>nsin(α-β)時船沒有觸礁危險【解析】【答案】mcosαcosβ>nsin(α-β)9、略
【分析】【解析】
試題分析:按照規(guī)律對應(yīng)的所以=
考點:數(shù)列。
點評:本題的關(guān)鍵是找出規(guī)律第一行第二行屬難題.【解析】【答案】8010、log2x+1【分析】【解答】解:設(shè)t=2x,則x=log2x;
則由f(2x)=x+1得f(t)=log2t+1.
即f(x)=log2x+1.
故答案為:log2x+1.
【分析】利用換元法結(jié)合指數(shù)和對數(shù)的轉(zhuǎn)化關(guān)系進(jìn)行求解即可.11、略
【分析】解:令t=x2+x-3=-故函數(shù)t的圖象的對稱軸為x=-f(x)=g(t)=2t;
故f(x)的增區(qū)間即為函數(shù)t的增區(qū)間,而函數(shù)t的增區(qū)間為
故答案為:(-+∞).
令t=x2+x-3,則f(x)=g(t)=2t;本題即求函數(shù)t的增區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.
本題主要考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.【解析】(-+∞)12、略
【分析】解:∵A(1;0),B(0,-1);
∴||==
故答案為:.
根據(jù)兩點間的距離公式求出||的值即可.
本題考查了兩點間的距離公式的應(yīng)用,考查向量問題,是一道基礎(chǔ)題.【解析】13、略
【分析】解:∵從1000名學(xué)生從中抽取一個容量為50的樣本;
∴系統(tǒng)抽樣的分段間隔為=20;
∵第一部分隨機抽取一個號碼為0015;
∴抽取的第二個編號為0035;
∴抽取的第十個編號為0195.
故答案是0195.
根據(jù)系統(tǒng)抽樣的特征,從1000名學(xué)生從中抽取一個容量為50的樣本,抽樣的分段間隔為=20;可得抽取的第10個號碼.
本題考查了系統(tǒng)抽樣方法,關(guān)鍵是求得系統(tǒng)抽樣的分段間隔.【解析】0195三、作圖題(共8題,共16分)14、略
【分析】【分析】作點A關(guān)于河CD的對稱點A′,當(dāng)水廠位置O在線段AA′上時,鋪設(shè)管道的費用最省.【解析】【解答】解:作點A關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.
∵點A與點A′關(guān)于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費用為10000元.15、略
【分析】【分析】作點A關(guān)于河CD的對稱點A′,當(dāng)水廠位置O在線段AA′上時,鋪設(shè)管道的費用最?。窘馕觥俊窘獯稹拷猓鹤鼽cA關(guān)于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設(shè)的管道長度為OA+OB.
∵點A與點A′關(guān)于CD對稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000×5=10000(元).
答:鋪設(shè)管道的最省費用為10000元.16、【解答】冪函數(shù)y={#mathml#}x32
{#/mathml#}的定義域是[0;+∞),圖象在第一象限,過原點且單調(diào)遞增,如圖所示;
【分析】【分析】根據(jù)冪函數(shù)的圖象與性質(zhì),分別畫出題目中的函數(shù)圖象即可.17、【解答】圖象如圖所示。
【分析】【分析】描點畫圖即可18、解:程序框圖如下:
【分析】【分析】根據(jù)題意,設(shè)計的程序框圖時需要分別設(shè)置一個累加變量S和一個計數(shù)變量i,以及判斷項數(shù)的判斷框.19、解:程序框圖如下:
【分析】【分析】根據(jù)題目中的程序語言,得出該程序是順序結(jié)構(gòu),利用構(gòu)成程序框的圖形符號及其作用,即可畫出流程圖.20、解:如圖所示:
【分析】【分析】由幾何體是圓柱上面放一個圓錐,從正面,左面,上面看幾何體分別得到的圖形分別是長方形上邊加一個三角形,長方形上邊加一個三角形,圓加一點.21、解:程序框圖如下:
【分析】【分析】該函數(shù)是分段函數(shù),當(dāng)x取不同范圍內(nèi)的值時,函數(shù)解析式不同,因此當(dāng)給出一個自變量x的值時,必須先判斷x的范圍,然后確定利用哪一段的解析式求函數(shù)值,因為函數(shù)解析式分了三段,所以判斷框需要兩個,即進(jìn)行兩次判斷,于是,即可畫出相應(yīng)的程序框圖.四、證明題(共2題,共14分)22、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.23、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.五、計算題(共3題,共9分)24、略
【分析】【分析】分別根據(jù)負(fù)整數(shù)指數(shù)冪、二次根式的化簡、0指數(shù)冪及特殊角的三角函數(shù)值計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進(jìn)行計算即可.【解析】【解答】解:原式=-(+1)+2×-+1
=--1+-+1
=-.25、略
【分析】【分析】連接BD;根據(jù)AD∥OC,易證得OC⊥BD,根據(jù)垂徑定理知:OC垂直平分BD,可得CD=CB,因此只需求出CB的長即可;
延長AD,交BC的延長線于E,則OC是△ABC的中位線;設(shè)未知數(shù),表示出OC、AD、AE的長,然后在Rt△ABE中,表示出BE的長;最后根據(jù)切割線定理即可求出未知數(shù)的值,進(jìn)而可在Rt△CBO中求出CB的長,即CD的長.【解析】【解答】解:連接BD;則∠ADB=90°;
∵AD∥OC;
∴OC⊥BD;
根據(jù)垂徑定理;得OC是BD的垂直平分線,即CD=BC;
延長AD交BC的延長線于E;
∵O是AB的中點;且AD∥OC;
∴OC是△ABE的中位線;
設(shè)OC=x;則AD=6-x,AE=2x,DE=3x-6;
Rt△ABE中,根據(jù)勾股定理,得:BE2=4x2-16;
由切割線定理,得BE2=ED?AE=2x(3x-6);
∴4x2-16=2x(3x-6);解得x=2,x=4;
當(dāng)x=2時;OC=OB=2,由于OC是Rt△OBC的斜邊,顯然x=2不合題意,舍去;
當(dāng)x=4時;OC=4,OB=2;
在Rt△OBC中,CB==2.
∴CD=CB=2.26、略
【分析】【分析】根據(jù)實數(shù)的運算順序計算,注意:()-1==2;任何不等于0的數(shù)的0次冪都等于1;=-2;由于1-<0,所以|1-|=-1.【解析】【解答】解:原式=2+1×(-2)+=-1.六、綜合題(共4題,共24分)27、略
【分析】【分析】(1)過B作BG∥AF交BCEC于G,則可以得到△CDF∽△CBG,接著利用相似三角形的性質(zhì)得到,在Rt△ABD中,利用勾股定理可得;又△EGB∽△EFA,由此利用相似三角形的性質(zhì)即可求出y與x的函數(shù)關(guān)系;
(2)當(dāng)∠ACE=90°時,則有∠FCD=∠DAC,由此得到Rt△ADC∽Rt△CDF,接著利用相似三角形的性質(zhì)得到CD2=AD?DF,所以16=,從而得到,代入,即可求出x.【解析】【解答】解:(1)過B作BG∥AF交EC于G,
則△CDF∽△CBG;
∴;
∴;
在Rt△ABD中,可得;
又∵△EGB∽△EFA;
∴;
∴;
(2)當(dāng)∠ACE=90°時;則有∠FCD=∠DAC;
∴Rt△ADC∽Rt△CDF;
∴;
∴CD2=AD?DF;
∴16=;
∴;
代入,有;
解得.28、略
【分析】【分析】首先根據(jù)等腰三角形的性質(zhì)得出CO垂直平分AB,進(jìn)而求出△ABC是等邊三角形,再利用勾股定理求出C到x軸的距離,即可得出C點坐標(biāo),同理可以求出所有符合要求的結(jié)果.【解析】【解答】解:過點C作CM⊥y軸于點M;作CN⊥x軸于點N.
∵點A(-2;0),點B(0,2);
∴AO=BO=2;
又∵點C在第二;四象限坐標(biāo)軸夾角平分線上;
∴∠BOC=∠COA=45°;
∴CO垂直平分AB(等腰三角形三線合一);
∴CA=CB;(線段垂直平分線上的點到線段兩端的距離相等);
∵∠BAC=60°;
∴△ABC是等邊三角形(有一個角等于60°的等腰三角形是等邊三角形);
∴AB=AC=BC;
∴AB===2;
假設(shè)CN=x,則CM=NO=x,NA=x-2,AC=2.
在Rt△CNA中,∵CN2+NA2=AC2;
∴x2+(x-2)2=(2)2;
整理得:x2-2x-2=0;
解得:x1=1+,x2=1-(不合題意舍去);
∴C點的坐標(biāo)為:(-1-,1+);
當(dāng)點在第四象限時;同理可得出:△ABC′是等邊三角形,C′點的橫縱坐標(biāo)絕對值相等;
設(shè)C′點的坐標(biāo)為(a;-a);
∴a2+(a+2)2=(2)2;
解得:a1=-1-(不合題意舍去),a2=-1+;
C′點的坐標(biāo)為:(-1+,1-);
故答案為:(-1+,1-),(-1-,1+).29、略
【分析】【分析】(1)首先設(shè)線段AB所表示的函數(shù)的解析式為y=kx+b,根據(jù)題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《延安大學(xué)研究生》課件
- 幼兒園周四營養(yǎng)食譜
- 《爆管應(yīng)急處理預(yù)案》課件
- 《汽車回收再生服務(wù)》課件
- 教育行業(yè)前臺服務(wù)總結(jié)
- 醫(yī)療行業(yè)前臺工作體會
- 財務(wù)工作成長心得
- 康復(fù)閱讀護(hù)士的工作總結(jié)
- 客戶信用評估總結(jié)
- 《淺談酒店市場營銷》課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實踐指導(dǎo)材料之10:“5領(lǐng)導(dǎo)作用-5.4創(chuàng)新文化”(雷澤佳編制-2025B0)
- 2024版定制家具生產(chǎn)與知識產(chǎn)權(quán)保護(hù)合同范本2篇
- 智能制造能力成熟度模型(-CMMM-)介紹及評估方法分享
- 2024年個人總結(jié)、公司規(guī)劃與目標(biāo)
- 信用評級機構(gòu)的責(zé)任與風(fēng)險管理考核試卷
- 中小學(xué)教師家訪記錄內(nèi)容三(共18篇)
- 英語趣味課堂課件
- 醫(yī)院后勤節(jié)能降耗工作計劃
- 《法制宣傳之盜竊罪》課件
- 暨南大學(xué)《社會學(xué)概論》2021-2022學(xué)年第一學(xué)期期末試卷
- 湖南工業(yè)大學(xué)《行政法(上)》2022-2023學(xué)年第一學(xué)期期末試卷
評論
0/150
提交評論