專題04 一次函數(shù)和反比例函數(shù)的應(yīng)用(測(cè)試)-2024年中考數(shù)學(xué)沖刺復(fù)習(xí)講練測(cè)(浙江新中考)(解析版)_第1頁
專題04 一次函數(shù)和反比例函數(shù)的應(yīng)用(測(cè)試)-2024年中考數(shù)學(xué)沖刺復(fù)習(xí)講練測(cè)(浙江新中考)(解析版)_第2頁
專題04 一次函數(shù)和反比例函數(shù)的應(yīng)用(測(cè)試)-2024年中考數(shù)學(xué)沖刺復(fù)習(xí)講練測(cè)(浙江新中考)(解析版)_第3頁
專題04 一次函數(shù)和反比例函數(shù)的應(yīng)用(測(cè)試)-2024年中考數(shù)學(xué)沖刺復(fù)習(xí)講練測(cè)(浙江新中考)(解析版)_第4頁
專題04 一次函數(shù)和反比例函數(shù)的應(yīng)用(測(cè)試)-2024年中考數(shù)學(xué)沖刺復(fù)習(xí)講練測(cè)(浙江新中考)(解析版)_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題04一次函數(shù)和反比例函數(shù)的應(yīng)用

■k題型特訓(xùn)?精準(zhǔn)提分

題型01一次函數(shù)■分配方案問題

題型02一次函數(shù)■最大利潤(rùn)問題

題型03一次函數(shù)■行程問題

題型04一次函數(shù)■幾何問題

題型05反比例函數(shù)的實(shí)際應(yīng)用

題型06反比例函數(shù)和一次函數(shù)實(shí)際應(yīng)用

題型07反比例函數(shù)與一次函數(shù)其他運(yùn)用

中考逆襲?高效集訓(xùn)

第1頁共57頁

?題型特訓(xùn)?精準(zhǔn)提分

題型01一次函數(shù)-分配方案問題

1.[2024?成都模擬)某學(xué)校為讓學(xué)生養(yǎng)成“終身體育”的良好習(xí)慣,舉辦了校園運(yùn)動(dòng)會(huì).運(yùn)動(dòng)會(huì)上的參賽

選手努力拼搏、團(tuán)結(jié)進(jìn)取,展現(xiàn)了新時(shí)代學(xué)生蓬勃向上的良好精神風(fēng)貌.為表彰取得優(yōu)異成績(jī)的參賽選

手,學(xué)校計(jì)劃購入甲、乙兩種體育文創(chuàng)產(chǎn)品,已知每件乙種文創(chuàng)產(chǎn)品的價(jià)格比每件甲種文創(chuàng)產(chǎn)品的價(jià)格

多10元,且用300元購進(jìn)甲種文創(chuàng)產(chǎn)品的數(shù)量與用400元購進(jìn)乙種文創(chuàng)產(chǎn)品的數(shù)量相同.

(1)求甲、乙兩種文創(chuàng)產(chǎn)品的單價(jià);

(2)若學(xué)校一次性購進(jìn)甲、乙兩種文創(chuàng)產(chǎn)品共200件,且要求購進(jìn)甲種文創(chuàng)產(chǎn)品的件數(shù)不超過乙種文創(chuàng)

產(chǎn)品件數(shù)的2倍,則學(xué)校怎樣購買才能使費(fèi)用最少?求出購買文創(chuàng)產(chǎn)品的最少費(fèi)用及相應(yīng)的購買方案.

【答案】(1)30元,40元;

(2)購進(jìn)甲種文創(chuàng)產(chǎn)品133件、乙種文創(chuàng)產(chǎn)品67件,6670元.

【解析】解:(I)設(shè)甲種文創(chuàng)產(chǎn)品的單價(jià)是x元,則乙種文創(chuàng)產(chǎn)品的單價(jià)是(x+10)元.

根據(jù)題意,得刎

xx+10

解得x=30,

經(jīng)檢驗(yàn),x=30是所列分式方程的解,

30+10=40(元),

???甲、乙兩種文創(chuàng)產(chǎn)品的單價(jià)分別是30元和40元.

(2)設(shè)購進(jìn)甲種文創(chuàng)產(chǎn)品小件,則購進(jìn)乙種文創(chuàng)產(chǎn)品(200-w)件,

根據(jù)題意,得mW2(200-77/),

解得〃忘刎(”為整數(shù)).

3

設(shè)購買這些文創(chuàng)產(chǎn)品的費(fèi)用為W元,則W=30〃?+40(200-〃?)=-10w+8()(X).

V-10<0,

???W隨,〃的增大而減小,

工當(dāng)〃7=133時(shí),W取最小值,W^=-10X133+8000=6670,

此時(shí)購進(jìn)乙種文創(chuàng)產(chǎn)品200-133=67(件),

???購進(jìn)甲種文創(chuàng)產(chǎn)品133件、乙種文創(chuàng)產(chǎn)品67件才能使費(fèi)用最少,最少費(fèi)用為6670元.

2.(2024?蒲城縣模擬)【項(xiàng)目情境】

校本研修是一種針對(duì)學(xué)校教職工進(jìn)行的專業(yè)培訓(xùn)和提升的方式,旨在通過集中培訓(xùn)活動(dòng)來促進(jìn)教師專業(yè)

發(fā)展和學(xué)校教育水平的提高.為推進(jìn)基層學(xué)校更好地開展校本研修,某校需要卬刷一批校本研修(聽課)

記錄冊(cè),咨詢了甲、乙兩個(gè)印刷廠,他們給出的收費(fèi)標(biāo)準(zhǔn)如圖所示.設(shè)印制數(shù)量為份),甲、乙兩個(gè)

印刷廠的收費(fèi)分別為“(元)和”(元).

第2頁共57頁

【項(xiàng)目解決】

目標(biāo)1:確定甲、乙兩廠的收費(fèi)標(biāo)準(zhǔn).

(1)分別求),1、”關(guān)于X的函數(shù)表達(dá)式.

目標(biāo)2:給出最終選擇方案.

(2)根據(jù)印制數(shù)量的不同,如何選擇較優(yōu)惠的印刷廠?

(2)印制數(shù)量大于2500本時(shí),選擇乙廠;印制數(shù)量為2500本時(shí),選擇兩個(gè)廠都一樣;印制數(shù)量小于

2500本時(shí),選擇甲廠.

【解析】解:(1)由圖象可知,甲廠每本收費(fèi)400?1000=0.4(元),

.,.yi=0.4x;

設(shè)”=匕+瓦把(0,500),(1000,700)代入得:

fb=500

11000k+b=700

解得2,

lb=500

A3?2=0.2X+500:

(2)當(dāng)f>”,即0.4x>0.2r+500時(shí),

解得:x>2500,

???印制數(shù)量大于2500本時(shí),選擇乙廠:

當(dāng)y\=”,即0小=02計(jì)500時(shí),

解得:x=25OO,

???印制數(shù)量為2500本時(shí),選擇兩個(gè)廠都一樣;

當(dāng)>'1V”,即04EV02r+5()()時(shí),

解得:x<2500,

???印制數(shù)量小于2500本時(shí),選擇甲廠:

答:印制數(shù)量大于2500本時(shí),選擇乙廠;印制數(shù)最為2500本可,選擇兩個(gè)廠都一樣;印制數(shù)量小于2500

本時(shí),選擇甲廠.

4.(2024?沈丘縣一模)某校準(zhǔn)備購買一批羽毛球拍和羽毛球?qū)Ω柙伇荣惈@獎(jiǎng)學(xué)生進(jìn)行獎(jiǎng)勵(lì),團(tuán)委王老師經(jīng)

第3頁共57頁

過調(diào)研發(fā)現(xiàn)購買2副羽毛球拍和3盒羽毛球需花費(fèi)290元,購買3副羽毛球拍和2盒羽毛球需花費(fèi)360

元.

(1)求每副羽毛球拍和每盒羽毛球的價(jià)格.

(2)本次歌詠比賽的獲獎(jiǎng)學(xué)生共50名,學(xué)校決定獲得一等獎(jiǎng)獎(jiǎng)勵(lì)一副羽毛球拍,二等獎(jiǎng)獎(jiǎng)勵(lì)一盒羽毛

球,本次比賽只設(shè)一、二等獎(jiǎng),且一等獎(jiǎng)人數(shù)不超過二等獎(jiǎng)人數(shù)的工,設(shè)羽毛球拍購買x副,則羽毛球

3

拍最多購買多少副?

(3)現(xiàn)有兩家文體公司售賣羽毛球拍和羽毛球,兩家公司售價(jià)與(1)中的價(jià)格相同,且兩家公司均在

做讓利活動(dòng),方案如下:

甲公司:所有商品一律打八折.

乙公司:買一副羽毛球拍送一盒羽毛球.

①設(shè)羽毛球拍購買x副,學(xué)校若在甲公司購買需花費(fèi)),1元,若在乙公司購買需花費(fèi)中元,求出V,*

關(guān)于x的解析式;

②若只在一家公司購買,學(xué)校應(yīng)選擇哪家公司最合算?

【答案】(1)每副羽毛球拍和每盒羽毛球的單價(jià)分別為100元和30元;

(2)羽毛球拍最多購買12副;

(3)①從甲公司購買時(shí)),1關(guān)7x的函數(shù)關(guān)系式為yi=56.什1200;從乙公司購買時(shí)”關(guān)于K的函數(shù)關(guān)系

式為),=40x+1500;②學(xué)校應(yīng)選擇在甲公司購買最合算.

【解析】解:(1)設(shè)每副羽毛球拍和每盒羽毛球的價(jià)格分別為。元和》元,

依題意得,儼+3b=290,

l3a+2b=360

解得卜=100.

lb=30

答:每副羽毛球拍和每盒羽毛球的單價(jià)分別為10()元和30元;

(2)設(shè)羽毛球拍購買x副球,則羽毛球購買(50-x)盒,

依題意得,xW2(50-x),

3

解得xW至,

2

為整數(shù),

???羽毛球拍最多購買12副;

(3)①從甲公司購買的費(fèi)用:yi=[100x+30(50-x)JX80%=56x+1200.

從乙公司購買的費(fèi)用:”=10。計(jì)30(50-x-x)=40A+1500

,從甲公司購買時(shí)戶關(guān)于x的函數(shù)關(guān)系式為戶=56x+1200:從乙公司購買時(shí)"關(guān)于x的函數(shù)關(guān)系式為1y

=40x+1500;

②當(dāng)yiV”時(shí),即56X+12(X)<40.¥+150(),

第4頁共57頁

解得xV18.75,

???當(dāng)xW18時(shí),到甲公司購買更劃算;

當(dāng)),1=”時(shí),即56,1+1200=4(lv+1500,

解得x=18.75.

??"為整數(shù),

???甲、乙公司的花費(fèi)不會(huì)相同;

當(dāng)yi>y2時(shí),W56x+1200>4(h-+1500,

解得Q18.75:

???當(dāng)xN19時(shí).,到乙公司購買更合算.

?.?(XW空,

2

???學(xué)校應(yīng)選擇在甲公司購買最合算.

5.(2024?駐馬店一模)圍棋起源于中國(guó),古代稱為“弈”,是棋類鼻祖,圍棋距今己有四千多年的歷史.中

國(guó)象棋也是中華民族的文化瑰寶,它源遠(yuǎn)流長(zhǎng),趣味濃厚,基本規(guī)則簡(jiǎn)明易懂.國(guó)家“雙減”政策實(shí)施

后,某校為參加社團(tuán)的同學(xué)去商場(chǎng)購買中國(guó)象棋和圍棋.其中購買40副象棋和20副圍棋共花費(fèi)2600元,

已知購買1副象棋比I副圍棋少花10元.(1)求每副象棋和圍棋的單價(jià);

(2)隨著社團(tuán)活動(dòng)的開展和同學(xué)們對(duì)棋類運(yùn)動(dòng)的熱愛,學(xué)校決定再次購買40副圍棋和機(jī)(/〃220)副

中國(guó)象棋,在購買時(shí),恰逢商場(chǎng)推出了優(yōu)惠活動(dòng),活動(dòng)的方案如下:方案一:購買圍棋超過20副時(shí),超

過部分每購買1副圍棋贈(zèng)送1副中國(guó)象棋;

方案二:按購買總金額的八折付款.

分別求出按照方案一、二購買的總費(fèi)用戶、”關(guān)于相的函數(shù)關(guān)系式:

(3)若選擇方案二購買更合算,求機(jī)的取值范圍.

【答案】(1)每副中國(guó)象棋的價(jià)格是15元,每副圍棋的價(jià)格是3()元.

(2)yi=40w+12(X);*=32/〃+1600.

(3)當(dāng)〃?>5()時(shí),該校選擇方案二更劃算.

【解析】解:(I)設(shè)每副象棋的價(jià)格是〃元,每副圍棋的價(jià)格是〃元.

依題意有(4°a+20b=2600,

la=b-10

解得:(a=40,

lb=50

答:每副象棋的價(jià)格是40元,每副圍棋的價(jià)格是50元;

(2)設(shè)選擇方案一所需的費(fèi)用為),i元,選擇方案二所需的費(fèi)用為),2元.

根據(jù)題意得:yi=40X50+40(w-20)=40w+1200;

y2=(40/^+40X50)X0.8=32/w+1600;

(3)???選擇方案二購買更合算,

第5頁共57頁

.\y\>y2,

???40〃?+1200>32m+1600,解得m>5().

答:當(dāng)小>50時(shí).,該校選擇方案二更劃算.

6.(2023秋?宿松縣期末)2023年12月18F1甘肅積石山縣發(fā)生6.2級(jí)地震,造成嚴(yán)重的人員傷亡和財(cái)產(chǎn)損

失.為支援災(zāi)區(qū)的災(zāi)后重建,甲、乙兩縣分別籌集了水泥200噸和300噸支援災(zāi)區(qū),現(xiàn)需要調(diào)往災(zāi)區(qū)A

鎮(zhèn)100噸,調(diào)往災(zāi)區(qū)B鎮(zhèn)400噸.已知從甲縣調(diào)運(yùn)一噸水泥到A鎮(zhèn)和B鎮(zhèn)的運(yùn)費(fèi)分別為40元和80元;

從乙縣調(diào)運(yùn)一噸水泥到A鎮(zhèn)和B鎮(zhèn)的運(yùn)費(fèi)分別為30元和50元.

(1)設(shè)從甲縣調(diào)往4鎮(zhèn)水泥/噸,求總運(yùn)費(fèi)),關(guān)于x的函數(shù)關(guān)系式;

(2)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)是多少?

【答案】(1)y=-201+29000(OWxWlOO);

(2)從甲縣分別調(diào)往A鎮(zhèn)和6鎮(zhèn)水泥各100噸,從乙縣將300噸水泥全部調(diào)往4鎮(zhèn),27000元.

【解析】解:(1)根據(jù)題意可知,從甲縣調(diào)往B鎮(zhèn)水泥(20()7)噸,從乙縣調(diào)往人鎮(zhèn)水泥(100-x)

噸、調(diào)往8鎮(zhèn)水泥(x+200)噸,

Ay-40.r+80(200-x)+30(100-x)+50(x+200)--20A+29000,

???),關(guān)于x的函數(shù)關(guān)系式為y=-20x+290(X)(OWxW100).

(2)Vy=-20x+29000(04W100),

???),隨x的增大而減小,

當(dāng)x=100時(shí),),取最小值,y的最小值為y=-20X100+29000=27000,

???從甲縣分別調(diào)往A鎮(zhèn)和B鎮(zhèn)水泥各100噸,從乙縣將3(X)噸水泥全部調(diào)往B鎮(zhèn),可使總運(yùn)費(fèi)最低,最

低運(yùn)費(fèi)是27000元.

題型02一次函數(shù).最大利潤(rùn)問題

I.(2023秋?端州區(qū)期末)2023年杭州亞運(yùn)會(huì)期間,吉祥物徽章受到了眾多人的喜愛.某網(wǎng)店直接從工廠

購進(jìn)A款禮盒120盒,B款禮盒5。盒,兩款禮盒全部售完.兩款禮盒的進(jìn)貨價(jià)和銷售價(jià)如下表:

類別

8款禮盒

進(jìn)貨價(jià)(元/盒)3025

銷售價(jià)(元/盒)4533

(1)求該網(wǎng)店銷售這兩款禮盒所獲得的總利潤(rùn).

(2)網(wǎng)店計(jì)劃用第一次所獲的銷售利潤(rùn)再次去購買A、8兩款禮盒共80盒.該如何設(shè)計(jì)進(jìn)貨方案,使

網(wǎng)店獲得最大的銷售利潤(rùn)?最大俏售利潤(rùn)是多少?

【答案】(1)該網(wǎng)店銷售這兩款禮盒所獲得的總利潤(rùn)為2200元;

第6頁共57頁

(2)該網(wǎng)店購進(jìn)A款禮盒和B款禮盒各40盒網(wǎng)店獲得最大的銷售利潤(rùn),最大利潤(rùn)為920元.

【解析】解:(1)120X(45-30)+50(33-25)=1800+400=2200(元),

答:該網(wǎng)店銷售這兩款禮盒所獲得的總利潤(rùn)為2200元;

(2)設(shè)購進(jìn)x盒A款禮盒,則購進(jìn)(80-x)盒8款禮盒,網(wǎng)店所獲利潤(rùn)為),元,

根據(jù)題意得:y=(45-30)x+(33-25)(80-x)=7.r+640,

XV30x+25(80-x)<2200,

,xW40,

V7>0,

???),隨x的增大而增大,

???當(dāng)x=40時(shí),y有最大值,最大值為920,

???該網(wǎng)店購進(jìn)A款禮盒和B款禮盒各40盒網(wǎng)店獲得最大的銷售利潤(rùn),最大利潤(rùn)為920元.

2.(2024?天河區(qū)校級(jí)一模)某農(nóng)場(chǎng)的一個(gè)家電商場(chǎng)為了響應(yīng)國(guó)家家電下鄉(xiāng)的號(hào)召,準(zhǔn)備用不超過10.57萬

元購進(jìn)40臺(tái)電腦,其中A型電腦每臺(tái)進(jìn)價(jià)2500元,B型電腦每臺(tái)進(jìn)價(jià)2800元,A型每臺(tái)售價(jià)3000元,

B型每臺(tái)售價(jià)3200元,預(yù)計(jì)銷售額不低于12.32萬元.設(shè)人型電腦購進(jìn)x臺(tái)、商場(chǎng)的總利潤(rùn)為,,(元).

(1)請(qǐng)你設(shè)計(jì)出進(jìn)貨方案;

(2)求出總利潤(rùn)),(元)與購進(jìn)人型電腦匯(臺(tái))的函數(shù)關(guān)系式,并利用關(guān)系式說明哪種方案的利潤(rùn)最

大,最大利潤(rùn)是多少元?

【答案】見試題解答內(nèi)容

【解析】解:(1)設(shè)A型電腦購進(jìn)上臺(tái),則4型電腦購進(jìn)(40-x)臺(tái),由題意,得

/2500X+2800(40-xX105700

3000x+3200(40-x)>123200,

解得:21WxW24,

??”為整數(shù),

,x=21,22,23,24

???有4種購買方案:

方案I:購A型電腦21臺(tái),B型電腦19臺(tái);

方案2:購A型電腦22臺(tái),B型電腦18臺(tái);

方案3:購A型電腦23臺(tái),8型電腦17臺(tái):

方案4:購A型電腦24臺(tái),4型電腦16臺(tái);

(2)由題意,得

y=(3(X)0-2500)x+(3200-28(X))(40-x),

=5001+16000-400A-,

=100x+16000.

第7頁共57頁

???k=100>0,

???),隨X的增大而增大,

1?x=24時(shí),yA4x=18400元.

答:采用方案4,即購A型電腦24臺(tái),B型電腦16臺(tái)的利澗最大,最大利潤(rùn)是18400元.

3.(2024春?夏邑縣月考)剪紙是我國(guó)古老的民間藝術(shù)之一.作為一種鏤空藝術(shù),剪紙能在視覺上給人以透

空的感覺和藝術(shù)享受.某經(jīng)銷商在某網(wǎng)店選中A,B兩種剪紙作品,決定從該網(wǎng)店進(jìn)貨并銷售.兩種剪

紙作品的進(jìn)貨價(jià)和銷售價(jià)如表:

4種剪紙作品3種剪紙作品

進(jìn)貨價(jià)(元/件)3040

銷售價(jià)(元/件)3550

(I)該經(jīng)銷商用680元購進(jìn)了A,B兩種剪紙作品共20件,求兩種剪紙作品各購進(jìn)多少件.

(2)該經(jīng)銷商計(jì)劃再次購進(jìn)兩種剪紙作品共33件,其中8種剪紙作品的進(jìn)貨量不超過A種剪紙作品進(jìn)

貨量的2倍.該經(jīng)銷商應(yīng)如何設(shè)計(jì)進(jìn)貨方案才能在兩種剪紙作品全部售出后獲得最大利潤(rùn)?最大利潤(rùn)是

多少?

【答案】(1)A剪紙作品購進(jìn)20個(gè),8剪紙作品購進(jìn)10個(gè);

(2)按照A剪紙作品購進(jìn)11個(gè)、8剪紙作品購進(jìn)22個(gè)的方案進(jìn)貨才能獲得最大利潤(rùn),最大利潤(rùn)是440

元.

【解析】解:(I)設(shè)4剪紙作品購進(jìn)x個(gè),8剪紙作品購進(jìn)(20-x)個(gè),由題意得:

3O,V+4O(20-x)=680,

解得:x=12,

20-12=8(個(gè)).

答:A剪紙作品購進(jìn)20個(gè),B剪紙作品購進(jìn)10個(gè);

(2)設(shè)第二次A剪紙作品購進(jìn)〃個(gè),8剪紙作品購進(jìn)(33?〃)個(gè),獲利),元,由題意得:

產(chǎn)(35-30)a+(50-40)(33-a)=-5。+495,

???B種剪紙作品的進(jìn)貨量不超過A種剪紙作品進(jìn)貨量的2倍,

;?33-

解得;11>而aW33,

??j,=-5。+495,

:?k=-5<0,

隨。的增大而減少.

.,.4=11時(shí),y城大=-5X11+495=440(元),

???B剪紙作品為:3371=22(個(gè)).

第8頁共57頁

答:按照A剪紙作品購進(jìn)11個(gè)、B剪紙作品購進(jìn)22個(gè)的方案進(jìn)貨才能獲得最大利澗,最大利潤(rùn)是440

元.

4.(2024?涼州區(qū)一模)某電器商場(chǎng)銷售甲、乙兩種品牌空調(diào),已知每臺(tái)乙種品牌空調(diào)的進(jìn)價(jià)比每臺(tái)甲種

品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺(tái).

(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià):

(2)該商場(chǎng)擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺(tái)進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)

為2500元/臺(tái),乙種品牌空調(diào)的售價(jià)為3500元/臺(tái).請(qǐng)你幫該商場(chǎng)設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10臺(tái)

空調(diào)后獲利最大,并求出最大利潤(rùn).

【答案】見試題解答內(nèi)容

【解析】解:(1)設(shè)甲種品牌空調(diào)的進(jìn)貨價(jià)為x元/臺(tái),則乙種品牌空調(diào)的進(jìn)貨價(jià)為L(zhǎng)2x元;臺(tái),

根據(jù)題意得:7200__3000_=2>

1.2xx

解得:x=1500,

經(jīng)檢驗(yàn),x=1500是原分式方程的解,

.*.L2v=l5(X)X1.2=1800.

答:甲種品牌空調(diào)的進(jìn)貨價(jià)為1500元/臺(tái),乙種品牌空調(diào)的進(jìn)貨價(jià)為1800元/臺(tái).

(2)設(shè)購進(jìn)甲種品牌空調(diào)。臺(tái),所獲得的利潤(rùn)為),元,則購進(jìn)乙種品牌空調(diào)(10-。)臺(tái),

根據(jù)題意得:1500。+1800(10-。)<16000,

解:心”

3

???aW10,且。為正整數(shù),

:.a=7,8,9,10.

Vy=(2500-1500)a+(3500-1800)(10-?)=-700〃+17000,其中女=-700<0,

???),的值隨著。的值的增大而減小,

???當(dāng)。=7時(shí),),取得最大值,此時(shí)y=-7X700+17000=12100.

答:進(jìn)貨方案為:購進(jìn)甲種空調(diào)7臺(tái),乙種空調(diào)3臺(tái),可獲得最大利潤(rùn),最大利潤(rùn)為12100元.

5.(2023秋?貨池區(qū)期末)隨著''低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為人們喜愛的交

通工具.某汽車銷售公司計(jì)劃購進(jìn)-?批新能源汽車嘗試進(jìn)行銷售,據(jù)了解2輛4型汽車、3輛3型汽車

的進(jìn)價(jià)共計(jì)110萬元;3輛A型汽車、2輛B型汽車的進(jìn)價(jià)共計(jì)115萬元.

(1)求4、8兩種型號(hào)的汽車每輛進(jìn)價(jià)分別為多少萬元?

(2)若該公司計(jì)劃用400萬元購進(jìn)以上兩種型號(hào)的新能源汽車(兩種型號(hào)的汽車均要購買,且400萬元

全部用完),問該公司有哪幾種購買方案,請(qǐng)通過計(jì)算列舉出來;

(3)若該汽車銷售公司銷售1輛A型汽車可獲利0.8萬元,俏售1輛8型汽車可獲利0.5萬元,在(2)

中的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤(rùn)是多少萬元?

第9頁共57頁

【答案】見試題解答內(nèi)容

【解析】解:(1)設(shè)A、△兩種型號(hào)的汽車進(jìn)價(jià)分別為x萬元、y萬元.

根據(jù)題意,w(2x+3y=11°,解得產(chǎn)5

l3x+2y=115ly=20

答:A、B兩種型號(hào)的汽車進(jìn)價(jià)分別為25萬元、20萬元.

(2)設(shè)A、8兩種型號(hào)的汽車分別購進(jìn)〃輛和〃輛.

根據(jù)題意,得25a+20/?=400,^b=20-—?

4

???兩種型號(hào)的汽車均購買,且心〃均為正整數(shù),

#4或卜=8或卜=12,

b=15b=10b=5

???共有以下3種購買方案:

方案1:A型號(hào)的汽車購進(jìn)4輛,6型號(hào)的汽車購進(jìn)15輛;

方案2:A型號(hào)的汽車購進(jìn)8輛,8型號(hào)的汽車購進(jìn)10輛;

方案3:A型號(hào)的汽車購進(jìn)12輛,6型號(hào)的汽車購進(jìn)5輛.

(3)方案1可獲利:0.8X4+0.5X15=10.7(萬元);

方案2可獲利:0.8X8+0.5X10=11.4(萬元);

方案3可獲利:0.8X12+0.5X5=12.1(萬元);

V10.7<11.4<12.1,

工方案3獲利最大,最大利潤(rùn)是12.1萬元.

6.(2023秋?阜陽期末)商店銷售1臺(tái)4型和2臺(tái)8型電腦的利潤(rùn)為400元,銷售2臺(tái)A型和1臺(tái)B型電

施的利潤(rùn)為350元,該商店計(jì)劃一次購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型

電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)),元.

(1)①求),關(guān)于X的函數(shù)關(guān)系式;

②該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大?

(2)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)了機(jī)(0V〃?W50)元,且限定商店最多的進(jìn)4型電腦70

臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及12)中條件,設(shè)計(jì)出售這100臺(tái)電腦銷售總

利潤(rùn)最大的進(jìn)貨方案.

【答案】(1)①1=-50x+15000,

②商店購進(jìn)34臺(tái)A型電腦和66臺(tái)5型電腦的銷售利潤(rùn)最大.

(2)①當(dāng)0VmV50時(shí),商店購進(jìn)34臺(tái)A型電腦和66臺(tái)8型電腦的銷售利潤(rùn)最大.

②加=50時(shí),商店購進(jìn)A型電胸?cái)?shù)量滿足332WxW70的整數(shù)時(shí),均獲得最大利潤(rùn).

3

【解析】解:(1)設(shè)每臺(tái)A型電腦銷售利潤(rùn)為。元,每臺(tái)8型電腦的銷售利潤(rùn)為。元;根據(jù)題意得

fa+2b=400

I2a+b=350

第io頁共57頁

解得卜=100

IOOA+150(100-x),即y=-5Ox+l5O()O,

②據(jù)題意得,IOO-xW2x,解得工2332,

3

Vy=-50x+15000,-50<0,

???y隨x的增大而減小,

??3為正整數(shù),

???當(dāng)x=34時(shí),y取最大值,則100-x=66,

即商店購進(jìn)34臺(tái)A型電腦和66臺(tái)8型電腦的銷售利潤(rùn)最大.

(2)據(jù)題意得,y=(100+m)x+150(100-%),即y=(m-50)x+15000,

3

①當(dāng)0V〃?V50時(shí),.v隨x的增大而減小,

???當(dāng)x=34時(shí),y取最大值,

即商店購進(jìn)34臺(tái)人型電腦和66臺(tái)B型電腦的銷售利潤(rùn)最大.

②加=50時(shí),m-50=0,>>=15000,

即商店購進(jìn)4型電腦數(shù)量滿足332WxW7O的整數(shù)時(shí),均獲得最大利潤(rùn).

3

題型03一次函數(shù).行程問題

I.(2024?浙江模擬〉已知人,B兩地相距90Q〃,甲、乙兩人沿同一條公路從人地出發(fā)到B地,乙騎自

行車,甲騎摩托車.圖中OF、折線O-E-C分別表示甲、乙離開4地的路程s(km)與時(shí)間/(h)的

函數(shù)關(guān)系的圖象,根據(jù)圖象填空:

(1)甲、乙兩人相遇前乙的速度為20kmfh,相遇后乙的速度為30k而h;

(2)求甲離開A地的路程s(km)與時(shí)間/(A)的函數(shù)表達(dá)式;

(3)若甲、乙兩人之間的距離表示為),(切?),請(qǐng)?jiān)趫D2中畫出距離》(km)與時(shí)間t(/?)的函數(shù)關(guān)系

圖象.

Ay/km

60---r-

50一.1

40---r-

30---*--

20--7-

10—;

60.5I1.522.533.5Th

圖2

第II頁共57頁

【答案】(1)20切?〃?,30km/h;

c_(0(0<t<l)

(2)s一;

l60t-60(l<t<2.5)

(3)圖象見解答.

【解析】(1)根據(jù)圖象,甲、乙兩人相遇前乙的速度為30?1.5=20(km/h),相遇后乙的速度為(90-

30)-r(3.5-1.5)=30(癡〃D.

故答案為:20kmJh,3()km/h.

(2)設(shè)甲離開4地的路程s與時(shí)間,的函數(shù)表達(dá)式為尸七+b*、〃為常數(shù),且20).

將坐標(biāo)E(1.5,30)和產(chǎn)(2.5,90)代入s=kf+b,

‘1.5k+b=30

2.5k+b=90

解得”:60.

lb=-60

.*.5=60/-60,

當(dāng)s=0時(shí),得60L60=0,

解得f=1,

???1W/W2.5,

???當(dāng)1WW2.5時(shí),甲離開A地的路程s與時(shí)間/的函數(shù)表達(dá)式為S=60L60(1W/W2.5),

???甲離開4地的路程s與時(shí)間r的函數(shù)表達(dá)式為

l60t-60(l<t<2.5)

(3)設(shè)OE對(duì)應(yīng)的s與1之間的關(guān)系式為s=%/(匕為常數(shù),且內(nèi)關(guān)0).

將坐標(biāo)E(1.5,30)代入S=粒,

得1.5內(nèi)=30,

解得后=20,

;?OE對(duì)應(yīng)的s與/之間的關(guān)系式為s=20f(0W/W1.5);

設(shè)EC對(duì)應(yīng)的s與/之間的關(guān)系式為s=Q/+加(幻、歷為常數(shù),且QK0).

將坐標(biāo)£(1.5,30)和C(3590)代入s=>f+加,

1.5ko+b1=30

得I21,

3.5k2+bi=90

rk=30

解得19,

bp-15

;?EC對(duì)應(yīng)的s與f之間的關(guān)系式為s=30/-15(1.5</<3.5).

綜上,乙離開A地的路程S與時(shí)間1的函數(shù)表達(dá)式為5=(20t(0<t<l,5)

130t-15(1.5<t<3.5)

當(dāng)0W/M1時(shí),y=20r;

第12頁共57頁

當(dāng)1V/W1.5時(shí),y=20t-(60r-60)=-40/+60:

當(dāng)1.5V/W2.5時(shí),y=60f-60-(30/-15)=301-45:

當(dāng)2.5V/W3.5時(shí),y=90-(30?-15)=-30/+105.

r20t(0<t<l)

,_-40t+60(l<t<1,5)

琮上尸30t-45(1.5<t<2.5)'

-30t+105(2.5<t<3.5)

其圖象如圖所?。?/p>

2.(2024?伊通縣一模)在一條筆直公路上A、B兩地相距120h〃,甲騎自行車從A地駛往8地,乙騎自行

車從8地駛往A地,甲比乙先出發(fā).設(shè)甲、乙兩人距A地的路程為y(千米),甲行駛的時(shí)間為小時(shí)),

y與x之間的關(guān)系如圖所示.

(1)甲騎自行車的速度是20千米/小時(shí),乙騎自行車的速度是3千米/小時(shí);

(2)求乙騎自行車距A地的路程),(千米)與甲騎自行車行獨(dú)的時(shí)間%(小時(shí))之間的函數(shù)關(guān)系式;

(3)當(dāng)甲、乙兩人相距20千米時(shí),直接寫出x的值.

【答案】(1)20.30:

(2)乙騎自行車距A地的路程y(千米)與甲騎自行車行駛的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為y=

,120(0<x<l)

-30x+150(l<x<150):

(3)當(dāng)甲、乙兩人相距20千米時(shí),工=里或x=2L

55

【解析】解:(1)甲騎自行車的速度是歿=20(千米/小時(shí)),乙騎自行車的速度是3=30(千米/小時(shí)),

35-3

故答案為:20,30:

第13頁共57頁

(2)???乙騎自行車的速度是30千米/小時(shí),

???乙從8地駛往4地所需時(shí)間為坨=4(小時(shí)),

30

???乙比甲晚出發(fā)1小時(shí),

當(dāng)OWxVl時(shí),y=12O;

當(dāng)時(shí),設(shè)),與x的函數(shù)解析式為),=丘+4

把(1,120),(5,0)代入),=履+力得:付b=120,

5k+b=0

解得(k=-30,

lb=150

???),=-3Ox+15O,

綜上所述,乙騎自行車距A地的路程y(千米)與甲騎自行車行駛的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為

=J120(0<x<l)

‘I-30x+150(l<x<150):

(3)根據(jù)題意甲車距A地的路程),與行駛時(shí)間r的函數(shù)解析式為y=20心

???兩車相距20km,

A|-30x+150-20x|=20,

即-5OA+15O=2O或-5O.v+15O=-20,

解得或

55

,當(dāng)甲、乙兩人相距2。千米時(shí),、=里或

55

3.(2024?和平區(qū)一模)甲,乙兩人騎自行車從A地到8地.甲先出發(fā)騎行3h〃時(shí),乙才出發(fā):開始時(shí),兩

人騎行速度相同,后來甲改變猗行速度,乙騎行速度始終保持不變;乙出發(fā)后2.8人甲到達(dá)4地.下面

圖中x表示乙騎行時(shí)間,),表示騎行的距離,圖象反映了甲,乙兩人騎行的距離與時(shí)間之間的對(duì)應(yīng)關(guān)系.

(I)乙比甲提前0.4萬到達(dá)B地,乙的騎行速度為15km/h,f值為1/7;

(II)求甲騎行過程中,),關(guān)于工的函數(shù)解析式;

(III)乙到達(dá)8地,此時(shí)甲離地的路程為4km;

(IV)在甲到達(dá)B地前,當(dāng)x=1.2力或2%或2.6萬h時(shí),甲乙兩人相距2km.

第14頁共57頁

Ay/km

36

ot2.42.8x/h

【答案】(I)0.4,15,1;

(ID甲騎行過程中,),關(guān)于k的函數(shù)解析式為產(chǎn)(15x+3,號(hào),1)

110x+8(l<x<2.8)

(III)4;

(IV)1.2力或2力或2.6.

【解析】解:(I)由圖象知,乙比甲提前2.8?24=0.4(〃)到達(dá),

乙的速度為36+2.4=15(千米/時(shí)),

???開始時(shí),甲、乙兩人騎行速度相同,

???片經(jīng)3=1,

15

???,的值為1,

故答案為:0.4,15,1;

(II)當(dāng)OWxWl時(shí),由題意得:y=\5x+3;

當(dāng)1VXW2.8時(shí),設(shè)y關(guān)于x的函數(shù)解析式為),=履+力,

把(1,18),(2.8,36)代入產(chǎn)質(zhì)+力得4"=18,

12.8k+b=36

解得"=1°,

lb=8

.,.),=10.v+8,

綜上所述,甲騎行過程中,),關(guān)于x的函數(shù)解析式為尸(15x+3,吃£1)

llOx+8(l<x<2.8)

(III)由圖象可知,/=2.4時(shí),乙到達(dá)B地,

在丁=10x+8中,令x=2.4得,=10X2.4+8=32,

736-32=4(千米),

???乙到達(dá)8地后,甲離B地4千米.

故答案為:4;

(IV)???乙的速度為15千米〃、時(shí),

第15頁共57頁

???乙騎行過程中,y關(guān)于X的函數(shù)解析式為y=\5x,

①甲、乙兩人相遇前后相距2k”,

則|10x+8-15.r|=2,

解得x=1.2或x=2;

②乙到達(dá)3地后,甲、乙相距2E】,

則x=2.4+曲=2.6.

2

綜上所述,當(dāng)%=1.2人或2人或2.6/1時(shí),甲乙兩人相距2%.

故答案為:1.2〃或2力或2.6.

4.(2024?西平縣一模)周末,小陽一家人準(zhǔn)備去離家7.5M?的公園野餐,小陽和爸爸為了鍛煉身體騎自行

車以25團(tuán)?〃?的速度從家先出發(fā),12〃〃力后媽媽帶著戶外野餐裝備從家開車沿同一條路追趕小陽,小陽到

達(dá)公園3/〃加后媽媽趕到.如區(qū)①是小陽一家所走路程y(單位:Q〃)關(guān)于出發(fā)時(shí)間x(單位:"而)的函

數(shù)關(guān)系圖象.

(1)求點(diǎn)3的坐標(biāo):

(2)求線段AC對(duì)應(yīng)的函數(shù)表達(dá)式,并寫出自變的取值范圍;

(3)請(qǐng)?jiān)趫D②中畫出小陽和媽媽之間的距離(單位:km)關(guān)于出發(fā)時(shí)間x(單位:疝〃)的函數(shù)圖象.

y/km.

6

5

4

3

2

1

O3691215182124x/min

【答案】(1)點(diǎn)8的坐稱為(18,7.5);

(2)線段AC對(duì)應(yīng)的函數(shù)表達(dá)式為尸》10(124W21);

(3)畫出函數(shù)圖象見解答過程.

【解析】解:⑴V7.54-25X60=18(min),

,點(diǎn)8的坐稱為(18,7.5);

(2)?門2〃”〃后媽媽帶著戶外野餐裝備從家開車沿同?條路追趕小陽,小陽到達(dá)公園3min后媽媽趕到,

:.A(12,0),C(21,7.5),

設(shè)線段AC對(duì)應(yīng)的函數(shù)表達(dá)式為)=心+4

.(12k+b=0

'l21k+b=7.5,

第16頁共57頁

解得「6,

b=-10

???線段4c對(duì)應(yīng)的函數(shù)表達(dá)式為產(chǎn)區(qū)-10(I2WXW2I);

6

(3)當(dāng)x=()時(shí)v'=0,當(dāng)工=12時(shí)),'=至乂12=5,當(dāng)工=18時(shí)0=7.5-7.5=(18_12)=2.5;

6021-12

當(dāng)x=21時(shí),y=o,

畫出函數(shù)圖象如下:

5.(2023?臨潼區(qū)一模)濤濤同學(xué)蔚共享單車保持勻速從家到博學(xué)書店買書,選好書付好款后,以相同的速

度原路騎共享單車返回家中.設(shè)濤濤同學(xué)距離家的路程為y(〃?),運(yùn)動(dòng)時(shí)間為x(〃〃力),),與x之間的函

數(shù)圖象如圖所示.

(1)a=14.

(2)在濤濤同學(xué)從書店返回家的過程中,求),與x之間的函數(shù)關(guān)系式.

(3)在濤濤從家里出發(fā)的同時(shí),小波同學(xué)以60〃"〃麗的速度從博學(xué)書店勻速步行去濤濤家,當(dāng)小波同學(xué)

與濤濤同學(xué)在路上相遇時(shí),直接寫出濤濤同學(xué)的運(yùn)動(dòng)時(shí)間.

【解析】解:(1)根據(jù)題意,24-10=14,

???。=14,

故答案為:14.

(2)設(shè)),與x的函數(shù)解析式為:),=區(qū)+兒

代入(14,2000),(24,0),

第17頁共57頁

得114k+b=2000

l24k+b=0

解得(k=-200,

b=4800

???函數(shù)解析式為:),=-200盧4800.

(3)設(shè)濤濤同學(xué)從家里出發(fā)x〃”〃,與小波同學(xué)相遇,

則有(200+60)x=2(X)0,

解得

13

工濤濤同學(xué)經(jīng)過期〃〃力與小波同學(xué)相遇.

13

題型04一次函數(shù).幾何問題

1.如圖1,一個(gè)長(zhǎng)方體鐵塊放置在高為60o〃的圓柱形容器內(nèi),現(xiàn)以一定的速度往容器內(nèi)注水,注滿容

器為止.容器頂部離水面的距離y(c〃?)與注水時(shí)間x(〃〃加之間的函數(shù)圖象如圖2所示.

(1)求線段8。的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)若注水速度為每分鐘1500O〃3,求長(zhǎng)方形鐵塊的體積.

(2)600(W.

【解析】解:(1)設(shè)線段8。的函數(shù)解析式:y=kx^b(^0),

將點(diǎn)8(4,40),C(12,20)代入解析式,

得[4k+b=40

312k+b=20,

解得K2,

b=50

???3。的解析式:y=1^i+50,

2

當(dāng)y=0時(shí),一|x+50=0,

解得4=20,

第18頁共57頁

???自變量X的取值范圍是:4WxW20,

,線段BD的解析式:y=莒計(jì)50(40W20);

2

(2)由圖象可知,容器頂部離水面的距離由60c〃?到40cm用時(shí)4分鐘,由40cm到20cm用時(shí)8分鐘,

乂???注水速度為每分鐘I5OOC77『,

,長(zhǎng)方體鐵塊的體積=(8-4)X1500=6000(cw3),

答:長(zhǎng)方體鐵塊的體積為600W〃P.

2.如圖,在長(zhǎng)、寬分別為8〃?,6川的長(zhǎng)方形場(chǎng)地中,先沿平行寬方向劃一塊寬度為x(〃?)的小長(zhǎng)方形場(chǎng)地

(如圖乙),再沿平行長(zhǎng)方向劃一塊寬度為2機(jī)的小長(zhǎng)方形場(chǎng)地(如圖甲),剩余部分為丙地塊,甲、乙、

丙地塊分別種植不同價(jià)格的花卉,如表,且丙場(chǎng)地種植花卉的面積不小于甲、乙場(chǎng)地種植花卉的面積和

的2,設(shè)甲、乙、丙場(chǎng)地種植花卉的總價(jià)為卬元.

3

(1)當(dāng)0cxW3時(shí),求卬關(guān)于x的函數(shù)表達(dá)式.

(2)若wWllOOO,請(qǐng)根據(jù)提供的信息,求x的取值范圍.

當(dāng)0<xWx>3時(shí),

3時(shí),花卉花卉的單

的單價(jià)價(jià)(元/平

(元/平方方米)

米)

甲100110

乙300270

丙200220

8m*

【答案】(1)當(dāng)0<xW3時(shí),w關(guān)于x的函數(shù)表達(dá)式為印=80(k+8000;(2)x的取值范圍為0vxW3.2.

【解析】解:(1)由題意,得卬=100X2(8-x)+300X6x+200X4(8-x)=800.v+8000,

:.當(dāng)0VxW3時(shí),w關(guān)于x的函數(shù)表達(dá)[1為M,=800;t+8000;

(2)①當(dāng)0?時(shí),把卬=800x+8000代入wW11000,

得800x+8000W11000,

第19頁共57頁

解得xW3.75,

XV4(8-x)■鏟(8-x)+6x],

解得:xW3.2,

???0VW3;

②當(dāng)x>3時(shí)、

vv=H0X2(8-x)+270X6x+220X4(8-x)=520x+8800,

當(dāng)wW11(X)()時(shí),得520x+8800<11000,

解得xW4&,

13

由??"W3.2,

???3VXW3.2.

綜上:x的取值范圍為OVxW3.2.

3.將一些相同規(guī)格的長(zhǎng)方形紙按圖①所示方法粘合起來,粘合部分的寬相等.某學(xué)校數(shù)學(xué)綜合與實(shí)踐小組

從函數(shù)角度進(jìn)行了如下探尢:

圖①

[觀察測(cè)量]數(shù)學(xué)綜合與實(shí)踐小組通過觀察測(cè)量,得到如表:

長(zhǎng)方形紙x(張)12345

總長(zhǎng)度y(厘米)1525354555

[探究發(fā)現(xiàn)]①建立平面直角坐標(biāo)系,如圖②,橫軸表示長(zhǎng)方形紙張數(shù)x,縱軸表示粘合后的總長(zhǎng)度,,,描

出以表格中數(shù)據(jù)為坐標(biāo)的各點(diǎn).

②觀察上述各點(diǎn)的分布規(guī)律,判斷它們是否在同一條直線上,如果在同一條直線上,求出這條直線所對(duì)

應(yīng)的函數(shù)表達(dá)式,如果不在同一條直線上,說明理由.

[結(jié)論應(yīng)用]應(yīng)用上述發(fā)現(xiàn)的規(guī)律計(jì)算:

①當(dāng)x=20時(shí),粘合后的紙條總長(zhǎng)度),為205厘米.

②粘合后的紙條總長(zhǎng)度),為505厘米時(shí),需使用長(zhǎng)方形紙50張.

第20頁共57頁

y(厘米)

5

)5-

5卜

4)(5)

40-

35

-

30

-

25

2-

0-

15

1-

O-

5-

0123456789i(張)

圖②

【答案】[探究發(fā)現(xiàn)]

①描出以表格中數(shù)據(jù)為坐標(biāo)的冬點(diǎn)見解答過程;

②上述各點(diǎn)在同一條直線上,這條直線對(duì)應(yīng)的函數(shù)表達(dá)式是),=10"5:

:結(jié)論應(yīng)用]

①205;

②50.

【解析】解:[探究發(fā)現(xiàn)]

①描出以表格中數(shù)據(jù)為坐標(biāo)的各點(diǎn)如圖:

y(屋米)

551

501

451

401

351

3()1

251

201

151

1(5)1

0123456789工(張)

②上述各點(diǎn)在同一條直線上,

設(shè)這條直線對(duì)應(yīng)的函數(shù)表達(dá)式是履+〃,將(1,15),(2,25)代入得:

(k+b=15,解得(k=9

2k+b=25b=5

答:這條直線對(duì)應(yīng)的函數(shù)表達(dá)式足,=10廣5;

[結(jié)論應(yīng)用]

①在>'=IOA+5中,令x=20得>*=205,

故答案為:205;

②在y=10x+5中,令),=505得x=50,

故答案為:50.

題型05反比例函數(shù)的實(shí)際應(yīng)用

1.(2024?扶溝縣一模)呆商家設(shè)計(jì)了一個(gè)水箱水位自幼報(bào)警儀,具電路圖如圖1所示,具中定值電阻R\

第21頁共57頁

=ion,R2是一個(gè)壓敏電阻,用絕緣薄膜包好后放在一個(gè)硬質(zhì)凹形絕緣盒中,放入水箱底部,受力面水

平,承受水壓的面積S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論