




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
「市場(chǎng)風(fēng)險(xiǎn)測(cè)量V
\與管理Z
FRMPartIIProgram■基礎(chǔ)班
講師:CrystalGao
e[史由+葉間晞的|hProfQuiomGsvn
TopicWeightingsinFRMPartII
SessionNO.Content%
Session1MarketRiskMeasurementandManagement20
Session2CreditRiskMeasurementandManagement20
Session3OperationalRiskandResiliency20
LiquidityandTreasuryRiskMeasurementand
Session415
Management
Session5RiskManagementandInvestmentManagement15
Session6CurrentIssuesinFinancialMarket10
2-201
行業(yè)?創(chuàng)新?憎值
ModelingDependence:CorrelationsAnd
Copulas
⑥Framework?SomeCorrelationBasics
i?EmpiricalPropertiesofCorrelation
、MarketRiskMeasurement
\/?FinancialCorrelationModeling
andManagement/EmpiricalApproachestoRiskMetricsand
Hedges
TermStructureModelsofInterestRates
?TheScienceofTermStructureModels
rVaRandotherRiskMeasures?TheEvolutionofShortRatesandthe
?ParametricApproachesShapeoftheTermStructure
?Non-parametricApproaches?TheArtofTermStructureModels:
?Semi-parametricApproachesDrift
?Extremevalue?TheArtofTermStructureModels:
,BacktestingVaRVolatilityandDistribution
?VaRNappingVolatilitySmiles
,RiskMeasurementfortheTradingBook
3-201
VaRandotherRiskMeasures
4-201
行業(yè)?創(chuàng)新?憎值
Parametric
.
Approaches
VaRandotherRiskMeasures
5-201
?l.ProfitandLoss
>Profit/Loss
P/L=Pt+Dt-P1
>ArithmeticReturnData:
Pt+Dt—Pt-iPt+Dt
r=-----------------=----------1
tPP
t-it-i
jGeometricReturnData:
P+D
Rt=皿與t-t-)=ln(l+r)
vt
t-i
6-201
行業(yè)?創(chuàng)新?憎值
?l.ProfitandLoss
>Thedifferencebetweenthetworeturnsisnegligiblewhenbothreturnsare
small,butthedifferencegrowsasthereturnsgetbigger-whichistobe
expected,asthegeometricisalogfunctionofthearithmeticreturn.
>Sincewewouldexpectreturnstobelowovershortperiodsandhigher
overlongerperiods,thedifferencebetweenthetwotypesofreturnis
negligibleovershortperiodsbutpotentiallysubstantialoverlongerones.
7-201
行業(yè)?創(chuàng)新?憎值
?2.NormalVaR
>Approach1:NormalVaR
?Weassumethatarithmeticreturnsarenormallydistributedwithmean叩
andstandarddeviationo
VaR=-(n-zaa)VaR=-(|i-ZaO)P.i
-10
Profit(-t-Vloss(-)
8-201
行業(yè)?創(chuàng)新?憎值
?2.NormalVaR
圜>Example:
?Assumethattheprofit/lossdistributionforXYZisnormally
distributedwithanannualmeanof$16millionandastandard
deviationof$11million.CalculatetheVaRatthe95%and99%
confidencelevelsusingaparametricapproach.
VaR(5%)=-$16million+Sllmillionx1.65
=$2.15million
VaR(l%)=-$16million+Sllmillionx2.33
=$9.63million
9-201
行業(yè)?創(chuàng)新?憎值
?3.LognormalVaR
>LognormalVaR
?Assumethatgeometricreturnsarenormallydistributedwithmeanp
andstandarddeviationo.Thisassumptionimpliesthatthenatural
logarithmofPtisnormallydistributed,orthatPtitselfislognormally
distributed.NormallydistributedgeometricreturnsimplythattheVaRis
lognormallydistributed.07
VaR=1-
3
=64
3
zQW
O
VaR=(l-e^?)PJ
d3
t-iO6.
2
-08-06-04-02002040808
Loss(4>Vbrofit(-)
10-201
行業(yè)?創(chuàng)新?憎值
?3.LognormalVaR
圜,Example:
?Adiversifiedportfolioexhibitsanormallydistributedgeometric
returnwithmeanandstandarddeviationof11%and21%,
respectively.Calculatethe5%and1%lognormalVaRassumingthe
beginningperiodportfoliovalueis$100.
LognormalVaR(5%)-100x(1-e011-0-21x1-65)-$21.06
LognormalVaR(l%)=100x(1-e011-0-21x2-33)=$31.57
11-201
行業(yè)?創(chuàng)新?憎值
4.Quantile-QuantilePlots
>Weareinterestedinasking:
?Ifdatalooksrightwhenweuseparametricapproach?
?Whatwedois
JPlotourdataonahistogramandestimatetherelevantsummary
statistics.
/Considerwhatkindofdistributionmightfitourdata.
>Aplotofthequantilesoftheempiricaldistributionagainstthoseofsome
specifieddistribution.TheshapeoftheQQplottellsusalotabouthowthe
>Inparticular,iftheQQplotislinear,thenthespecifieddistributionfitsthe
data,andwehaveidentifiedthedistributiontowhichourdatabelong.
12-201
行業(yè)?創(chuàng)新?憎值
4.Quantile-QuantilePlots
4
3
2
8
=
c
1
cn
b
e-
-2O
d-
E-
山
-1
-2
13-201
行業(yè)?創(chuàng)新?憎值
?4.Quantile-QuantilePlots
-10
Normalquantiles
14-201
行業(yè)?創(chuàng)新?憎值
Non-parametric
Approaches
VaRandotherRiskMeasures
15-201
?l.HistoricalSimulation
>Allnon-parametricapproachesarebasedontheunderlyingassumptionthat
?Withnon-parametricmethods,therearenoproblemsdealingwith
va種甲nce-covarianciematrices,cursesofdimensionality;etc.~
Loss(+)/profit(-)
16-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>BootstrappedHistoricalSimulation
■Thebootstrapisveryintuitiveaodeasytoapply.
?Wecreatealargenumberofnewsamples,eachobservationofwhichis
obtainedbydrawingatrandomfromouroriginalsampleandreplacing
theobservationafterithasbeendrawn.
?Eachnew'resampled'samplegivesusanewVaRestimate,andwecan
takeour'best'estimatetobethemeanoftheseresample-based
estimates.Thesameapproachcanalsobeusedtoproduceresample-
basedESestimates-eachoneofwhichwouldbetheaverageofthe
lossesineachresampleexceedingtheresampleVaR—andour'best'ES
estimatewouldbethemeanoftheseestimates.
>Abootstrappedestimatewilloftenbemoreaccuratethana'raw'sample
estimate,andbootstrapsarealsousefulforgaugingtheprecisionofour
estimates.
17-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>DrawbacksofHS
?BasicHShasthepracticaldrawbackthatitonlyallowsustoestimate
VaRsatdiscreteconfidenceintervalsdeterminedbythesizeofourdata
set.
?Forinstance,theVaRatthe95.1%confidencelevelisaproblembecause
thereisnocorrespondinglossobservationtogowithit.
?Withnobservations,basicHSonlyallowsustoestimatetheVaRs
associatedwith,at-best,ndifferentconfidencelevels.
18-201
行業(yè)?創(chuàng)新?憎值
?l.HistoricalSimulation
>Non-parametricDensityEstimation
?Non-paQmetricdensityestimationoffersapotentialsolution.
?Drawinstraightlinesconnectingthemid-pointsatthetopofeach
histogrambar(Polygon).
?Treatingtheareaunderthelinesasapdfthenenablesustoestimate
VaRsatanyconfidencelevel.
(a)Originalhistogram(b)SurrogAfedensin*function
19-201
行業(yè)?創(chuàng)新?憎值
?2.ExpectedShortfall
>TheConditionalVaR(expectedshortfall)
?TheexpectedvalueofthelosswhenitexceedsVaR.
?Measurestheaverageofthelossconditionalonthefactthatitisgreater
thanVaR.
?CVaRindicatesthepotentiallossiftheportfoliois"hit"beyondVaR.
BecauseCVaRisanaverageofthetailloss,onecanshowthatitqualifies
asasubadditiveriskmeasure.
04
3
O.H
^
全o
z
wO.2
a
d
20-201
行業(yè)?創(chuàng)新?憎值
?2.ExpectedShortfall
圜,Example:
?Giventhefollowing30orderedpercentagereturnsofanasset:
-16,-14,-10z-7Z-7Z-5Z-4-—L-L0,0,0,L22Z4Z
6,7,8,9,11,12,12,14,18,21f23.
CalculatetheVaRandexpectedshortfallata90%confidencelevel:
?Solution:
VaR(90%)=7,ExpectedShortfall=13.3
21-201
行業(yè)?創(chuàng)新?憎值
?3.VaRvsES
>VaRcurveandEScurve:plotsofVaRorESagainsttheconfidencelevel.
22-201
行業(yè)?創(chuàng)新?憎值
?3.VaRvsES
>Thelongerthewindow,thesparsertheVaRcurve.
>TheVaRcurveisfairlyunsteady,asitdirectlyreflectstherandomnessof
individuallossobservations,buttheEScurveissmoother,becauseeach
ESisanaverageoftaillosses.
jAstheholdingperiodrises,thenumberofobservationsrapidlyfalls,
andwesoonfindthatwedon'thaveenoughdata.
>Evenifwehadaverylongrunofdata,theolderobservationsmight
haveverylittlerelevanceforcurrentmarketconditions.
23-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>Advantages
?Intuitiveandconceptuallysimple;
?Donotdependonparametricassumptions;
?Accommodateanytypeofposition;
?Noneedforcovariancematrices,nocursesofdimensionality;
?Usedatathatare(often)readilyavailable;
?Arecapableofconsiderablerefinementandpotentialimprovementif
wecombinethemwithparametric“add-ons“tomakethemsemi-
parametric.
24-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>Disadvantages
?Verydependentonthehistoricaldataset;
?Subjecttoghosteffect;
?Ifourdataperiodwasunusuallyquiet,non-parametricmethodswill
oftenproduceVaRorESestimatesthataretoolowfortheriskwe
actuallyfacing,viceversa;
?Havedifficulty(actslowly)handlingsh+fe(permanentriskchange)that
takeplaceduringoursampleperiod;
25-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
?Havedifficultyhandlingextremevalue
/Ifourdatasetincorporatesextremelossesthatareunlikelytorecur,
theselossescandominatenon-parametricriskestimateseven
thoughwedon'texpectthemtorecur;
JMakenoallowanceforplausibleeventsthatmightoccur,butdid
notactuallyoccur,inoursampleperiod.
26-201
行業(yè)?創(chuàng)新?憎值
?4.A/DofNon-parametricMethods
>ProblemsfromLongWindow
?Thelongerthewindow:
/Thegreatertheproblemswithageddata;
?Thelongertheperiodoverwhichresultswillbedistortedby
unlikely-to-recurpastevents,andthelongerwewillhavetowaitfo『
/Themorethenewsincurrentmarketobservationsislikelytobe
drownedoutbyolderobservations;
/Thegreaterthepotentialfordata-<olleetioA-problems.
27-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
>Acoherentriskmeasureisaweightedaverageofthequantilesofour
lossdistribution.
1
0=I0(P)P
0
?①(p)=weighingfunctionspecifiedbytheuser.
>ExponentialWeightingFunction
-(i-)/
J:thedegreeofourrisk-aversion
28-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
jEstimatingexponentialspectralriskmeasuresasaweightedaverageof
VaRs(=0.05)
ConfidencelevelWeight
aVaR<P(a)xaVaR
(a)ct)(a)
10%-1.281600.0000
20%-0.841600.0000
30%-0.524400.0000
40%-0.25330.00010.0000
50%00.00090.0000
60%0.25330.00670.0017
70%0.52440.04960.0260
80%0.84160.36630.3083
90%1.28162.70673.4689
Riskmeasure=mean(0(a)timesaVaR)0.4226
29-201
行業(yè)?創(chuàng)新?憎值
?5.CoherentRiskMeasures
>Theestimatedoeseventuallyconvergetothetruevalueasngetslarge.
Estimatesofexponentialspectralcoherentrisk
measureasafunctionofthenumberoftailslices
Estimateofexponential
Numberoftailslices
spectralriskmeasure
100.4227
501.3739
1001.5853
5001.7896
10001.8197
50001.8461
10,0001.8498
50,0001.8529
100,0001.8533
500,0001.8536
30-201
行業(yè)?創(chuàng)新?憎值
Semi-parametric
Approaches
VaRandotherRiskMeasures
31-201
?l.Age-weightedHistoricalSimulation
>OnereturnobservationwillaffecteachoftheFieKW^-ebsewatieRS-inourP/L
series.Butafternperiodshavepassed,theobservationwillfalloutofthe
datasetusedtocalculatethecurrentHSP/Lseries,andwillthereafterhave
noeffectonP/L.
>Thisweightingstructurehasanumberofproblems.
?Oneproblemisthatit
samplepeHodthesameweight.
?Theequal-weightapproachcanalsomakeriskestimatesunresponsive
tomajorevents.
?Theequal-weightstructurealsopresumesthateachobservationinthe
sampleperiodisequallylikelyandindependentoftheothersovertime.
However,this'iid'assumptionisunrealistic.
32-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
?Itisalsohardtojustifywhyanobservationshouldhaveaweightthat
suddenlygoestozerowhenitreachesagen.
?Ghosteffects
/wecanhaveaVaRthatisundulyhigh(orlow)becauseofasmall
clusterofhighlossobservations,orevenjustasinglehighloss,and
themeasuredVaRwillcontinuetobehigh(orlow)untilndaysorso
havepassedandtheobservationhasfallenoutofthesampleperiod.
33-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Boudoukh,RichardsonandWhitelaw(BRW:1998)
?w⑴istheprobabilityweightgiventoanobservation1dayold.
?A入closeto1indicatesaslowrateofdecay,anda入farawayfrom1
indicatesahighrateofdecay.
A3(x)1A2(JO1入313]
|J4M3M21
入1(1—入|
3⑴+入3⑴+,?,+入吁1(x)(])=1T3。)=一二J
34-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Majorattractions
?ItprovidesanicegeneralizationoftraditionalHS,becausewecan
regardtraditional屋asewithzerodecay,or入11.
?AlargelosseventwillreceiveahigherweightthanundertraditionalHSZ
andtheresultingnext-dayVaRwouldbehigherthanitwouldotherwise
havebeen.
?Helpstoreducedistortionscausedbyeventsthatareunlikelytorecur,
andhelpstoreduce
/Asanobservationages,itsprobabilityweightgraduallyfallsandits
influencediminishesgraduallyovertime.Whenitfinallyfallsoutof
thesampleperiod,itsweightwillfallfrom入MQ)tozero,insteadof
from1/ntozero.
35-201
行業(yè)?創(chuàng)新?憎值
?l.Age-weightedHistoricalSimulation
>Majorattractions
■Age-weightingallowsus
observation,soweneverthrowpotentiallyvaluableinformationaway.
Thiswouldimproveefficiencyandeliminateghosteffects,becausethere
wouldnolongerbeany“jumps"inoursampleresultingfromold
observationsbeingthrownaway.
36-201
行業(yè)?創(chuàng)新?憎值
?2.Volatility-weightedHistoricalSimulation
>HullandWhite(HW1998)
?WeadjustthehistoHcalretumstoreflecthowvolatilitytomorrowis
believedtohavechangedfromitspastvalues.
/rti=actualreturnforassetiondayt
Jat>i=volatilityforecastforassetiondayt
/aTi=currentforecastofvolatilityforasseti
37-201
行業(yè)?創(chuàng)新?憎值
?2.Volatility-weightedHistoricalSimulation
>Majorattractions
?Ittakesaccountofvolatilitychangesinanaturalanddirectway.
?Itproducesriskestimatesthatareappropriatelyseroitive4G-WTOfrt
volatilityestimates.
?ItallowsustoobtainVaRandESestimatesthatcanexceedthe
maximumlossinourhistoricaldataset.
/Inrecentperiodsofhighvolatility,historicalreturnsarescaled
upwards,andtheHSP/LseriesusedintheHWprocedurewillhave
valuesthatexceedactualhistoricallosses.
?ProducessuperiorVaRestimatestotheBRWone.
38-201
行業(yè)?創(chuàng)新?憎值
?3.Correlation-weightedhistoricalsimulation
>Correlation-weightedhistoricalsimulation
?Correlation-weightingisalittlemoreinvolvedthanvolatility-weighting.
?Toseetheprinciplesinvolved,supposeforthesakeofargumentthatwe
havealreadymadeanyvolatility-basedadjustmentstoourHSreturns
alongHull-Whitelines,butalsowishtoadjustthosereturnstoreflect
changesincorrelations.
39-201
行業(yè)?創(chuàng)新?憎值
?4?Filteredhistoricalsimulation
,Filteredhistoricalsimulation(FHS)
?CombineshistoricalsimulationmodelwithGARCHorAGARCHmodel.
>Thestepsareasfollows:
?Firstly,usethehistoricalreturntofindanysurpriseandthusreproduce
volatilitywithGARCHorAGARCHmodel.
?Secondly,thesevolatilityforecastsarethendividedintotherealized
returnstoproduceasetofstandardizedreturns,whichisLED..
?Thethirdstageinvolvesbootstrappingfromthesetofstandardized
returns.
?Finally,eachofthesesimulatedreturnsgivesusapossibleend-of-
tomorrowportfoliovalue,andacorrespondingpossibleloss,andwe
taketheVaRtobethelosscorrespondingtoourchosenconfidence
level.
40-201
行業(yè)?創(chuàng)新?憎值
?4?Filteredhistoricalsimulation
>Majorattractions
?Combinethenon-parametricattractionsofHSwithasophisticated(eg,
GARCH)treatmentofvolatility,andsotakeaccountofchangingmarket
?Itisfest,evenforlargeportfolios
estimatesthatcanexceedthemaximumhistoricallossinousdataset.
?Itmaintainsthecoirelationstructureinourreturn
?Itcanbemodifiedtotakeaccountofautocorrelationsinassetreturns
?ItcanbemodifiedtoproduceestimatesofVaRorESconfidence
intervals.
?ThereisevidencethatFHSworkswell.
41-201
行業(yè)?創(chuàng)新?憎值
Extremevalue
VaRandotherRiskMeasures
42-201
?l.Introduction
“Thefitteddistributionwilltendtoaccommodatethemorecentral
observations,ratherthantheextremeobservations,whicharemuch
sparser.
>Theestimationoftherisksassociatedwithlowfrequencyeventswithlimited
dataisinevitablyproblematic.
>Extreme-valuetheory(EVT):
?Centraltendencystatisticsaregovernedbycentrallimittheorems,but
centrallimittheoremsdonotapplytoextremes.Instead,extremesare
governedbyextreme-valuetheorems.
43-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>SupposewehavearandomlossvariableXzandweassumetobeginwith
thatXisindependentandidenticallydistributed(iid)fromsomeunknown
distribution.ConsiderasampleofsizendrawnfromF(x)zandletthe
maximumofthissamplebeMnIfnislarge,wecanregardMnasanextreme
value.
>Underrelativelygeneralconditions,thecelebratedFisher-Tippetttheorem
thentellsusthatasngetslarge,thedistributionofextremes(i.e.zMn
convergestothefollowinggeneralizedextreme-value(GEV)distribution:
44-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>Thisdistributionhasthreeparameters.
x-U—x
exp[-(1+m丁)刃,"0
F(x)=Ix°_
exp[-exp(-----=0
r“thelocationparameterofthelimitingdistribution,whichisameasureofthe
centraltendencyofMn.
r,thescaleparameterofthelimitingdistribution,whichisameasureofthe
dispersionofMn.
r,thetailindex,givesanindicationoftheshape(orheaviness)ofthetailofthe
limitingdistribution.
?When5>0:Frechetdistribution,heavytails,I次et-dist,Paretodist.
?When5=0:Gumbeldistribution,lighttails,likenormalorlognormaldist.
■When5<0:Weibulldistribution,verylighttails,notusefulformodelling
financialreturns.
45-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
三
S
U
E
>
三
q一
R
q
o
」
d
46-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>HowdowechoosebetweentheGumbelandtheFrechet?
?WechoosetheEVdistributiontowhichtheextremesfromtheparent
distributionwilltend.
?Wecouldtestthesignificanceofthetailindex,andwemightchoose
theGumbelifthetailindexwasinsignificantandtheFrechetotherwise.
?Giventhedangersofmodelrisk,theestimatedriskmeasureincreases
withthetailindex,asaferoptionisalwaystochoosetheFrechet.
47-201
行業(yè)?創(chuàng)新?憎值
?2.GeneralizedExtremeValueDistribution
>EstimationofEVP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 食品安全員考試常見(jiàn)反思與改進(jìn)建議試題及答案
- 量化研究方法與應(yīng)用試題及答案
- 2025版合同履行保證書(shū)范本
- 2025年熔化焊接與熱切割證考試題庫(kù)及答案
- 防拐防騙課件
- 暑假安全知識(shí)普及教育課
- 2025年物業(yè)服務(wù)合同書(shū)
- 2025健身房轉(zhuǎn)讓合同范本下載
- 高校改革策略與實(shí)施路徑探索
- 汽車(chē)維修工職業(yè)發(fā)展方向探討試題及答案
- 浙江省金麗衢十二校2025屆高三下學(xué)期二模試題 地理 含解析
- 【+初中語(yǔ)文+】《山地回憶》課件+統(tǒng)編版語(yǔ)文七年級(jí)下冊(cè)
- 2024年員工知識(shí)產(chǎn)權(quán)與保密協(xié)議范本:企業(yè)知識(shí)產(chǎn)權(quán)保護(hù)實(shí)務(wù)3篇
- JGJ46-2024 建筑與市政工程施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
- GB 17790-2008家用和類(lèi)似用途空調(diào)器安裝規(guī)范
- 魔幻泡泡秀七彩體驗(yàn)館介紹
- 育苗花卉種子采購(gòu)合同 修
- 表面工程學(xué)第十二章-表面微細(xì)加工技術(shù)
- 聚乙烯塑料袋檢驗(yàn)記錄新
- 《建筑樁基技術(shù)規(guī)范》JGJ94-94送審報(bào)告
- 員工入職確認(rèn)單
評(píng)論
0/150
提交評(píng)論