下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁北京交通職業(yè)技術學院《機器學習技術及應用》
2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、當處理不平衡數(shù)據(jù)集(即某個類別在數(shù)據(jù)中占比極?。r,以下哪種方法可以提高模型對少數(shù)類別的識別能力()A.對多數(shù)類別進行欠采樣B.對少數(shù)類別進行過采樣C.調(diào)整分類閾值D.以上方法都可以2、在一個回歸問題中,如果數(shù)據(jù)存在非線性關系并且噪聲較大,以下哪種模型可能更適合?()A.多項式回歸B.高斯過程回歸C.嶺回歸D.Lasso回歸3、假設正在進行一項關于客戶購買行為預測的研究。我們擁有大量的客戶數(shù)據(jù),包括個人信息、購買歷史和瀏覽記錄等。為了從這些數(shù)據(jù)中提取有價值的特征,以下哪種方法通常被廣泛應用?()A.主成分分析(PCA)B.線性判別分析(LDA)C.因子分析D.獨立成分分析(ICA)4、在一個強化學習問題中,如果智能體需要與多個對手進行交互和競爭,以下哪種算法可以考慮對手的策略?()A.雙人零和博弈算法B.多智能體強化學習算法C.策略梯度算法D.以上算法都可以5、強化學習中的智能體通過與環(huán)境的交互來學習最優(yōu)策略。以下關于強化學習的說法中,錯誤的是:強化學習的目標是最大化累計獎勵。智能體根據(jù)當前狀態(tài)選擇動作,環(huán)境根據(jù)動作反饋新的狀態(tài)和獎勵。那么,下列關于強化學習的說法錯誤的是()A.Q學習是一種基于值函數(shù)的強化學習算法B.策略梯度算法是一種基于策略的強化學習算法C.強化學習算法只適用于離散動作空間,對于連續(xù)動作空間不適用D.強化學習可以應用于機器人控制、游戲等領域6、假設正在研究一個自然語言處理任務,例如文本分類。文本數(shù)據(jù)具有豐富的語義和語法結(jié)構(gòu),同時詞匯量很大。為了有效地表示這些文本,以下哪種文本表示方法在深度學習中經(jīng)常被使用?()A.詞袋模型(BagofWords)B.詞嵌入(WordEmbedding)C.主題模型(TopicModel)D.語法樹表示7、在進行深度學習中的圖像生成任務時,生成對抗網(wǎng)絡(GAN)是一種常用的模型。假設我們要生成逼真的人臉圖像。以下關于GAN的描述,哪一項是不準確的?()A.GAN由生成器和判別器組成,它們通過相互對抗來提高生成圖像的質(zhì)量B.生成器的目標是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務是區(qū)分輸入的圖像是真實的還是由生成器生成的D.GAN的訓練過程穩(wěn)定,不容易出現(xiàn)模式崩潰等問題8、在進行模型選擇時,我們通常會使用交叉驗證來評估不同模型的性能。如果在交叉驗證中,某個模型的性能波動較大,這可能意味著()A.模型不穩(wěn)定,需要進一步調(diào)整B.數(shù)據(jù)存在問題C.交叉驗證的設置不正確D.該模型不適合當前任務9、在一個異常檢測任務中,如果異常樣本的特征與正常樣本有很大的不同,以下哪種方法可能效果較好?()A.基于距離的方法,如K近鄰B.基于密度的方法,如DBSCANC.基于聚類的方法,如K-MeansD.以上都不行10、在一個信用評估模型中,我們需要根據(jù)用戶的個人信息、財務狀況等數(shù)據(jù)來判斷其信用風險。數(shù)據(jù)集存在類別不平衡的問題,即信用良好的用戶數(shù)量遠遠多于信用不良的用戶。為了解決這個問題,以下哪種方法是不合適的?()A.對少數(shù)類樣本進行過采樣,增加其數(shù)量B.對多數(shù)類樣本進行欠采樣,減少其數(shù)量C.為不同類別的樣本設置不同的權重,在損失函數(shù)中加以考慮D.直接使用原始數(shù)據(jù)集進行訓練,忽略類別不平衡11、假設要開發(fā)一個自然語言處理的系統(tǒng),用于文本情感分析,判斷一段文字是積極、消極還是中性??紤]到文本的多樣性和語義的復雜性。以下哪種技術和方法可能是最有效的?()A.基于詞袋模型的樸素貝葉斯分類器,計算簡單,但忽略了詞序和上下文信息B.循環(huán)神經(jīng)網(wǎng)絡(RNN),能夠處理序列數(shù)據(jù),但可能存在梯度消失或爆炸問題C.長短時記憶網(wǎng)絡(LSTM),改進了RNN的長期依賴問題,對長文本處理能力較強,但模型較復雜D.基于Transformer架構(gòu)的預訓練語言模型,如BERT或GPT,具有強大的語言理解能力,但需要大量的計算資源和數(shù)據(jù)進行微調(diào)12、在一個強化學習場景中,智能體在探索新的策略和利用已有的經(jīng)驗之間需要進行平衡。如果智能體過于傾向于探索,可能會導致效率低下;如果過于傾向于利用已有經(jīng)驗,可能會錯過更好的策略。以下哪種方法可以有效地控制這種平衡?()A.調(diào)整學習率B.調(diào)整折扣因子C.使用ε-貪婪策略,控制探索的概率D.增加訓練的輪數(shù)13、在一個醫(yī)療診斷項目中,我們希望利用機器學習算法來預測患者是否患有某種疾病。收集到的數(shù)據(jù)集包含患者的各種生理指標、病史等信息。在選擇合適的機器學習算法時,需要考慮多個因素,如數(shù)據(jù)的規(guī)模、特征的數(shù)量、數(shù)據(jù)的平衡性等。如果數(shù)據(jù)量較大,特征維度較高,且存在一定的噪聲,以下哪種算法可能是最優(yōu)選擇?()A.邏輯回歸算法,簡單且易于解釋B.決策樹算法,能夠處理非線性關系C.支持向量機算法,在小樣本數(shù)據(jù)上表現(xiàn)出色D.隨機森林算法,對噪聲和異常值具有較好的容忍性14、某研究團隊正在開發(fā)一個用于疾病預測的機器學習模型,需要考慮模型的魯棒性和穩(wěn)定性。以下哪種方法可以用于評估模型在不同數(shù)據(jù)集和條件下的性能?()A.交叉驗證B.留一法C.自助法D.以上方法都可以15、假設要對大量的文本數(shù)據(jù)進行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對短文本效果可能不好B.非負矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計算復雜度較高二、簡答題(本大題共3個小題,共15分)1、(本題5分)什么是聯(lián)邦學習中的模型加密技術?2、(本題5分)說明機器學習在攝影藝術中的圖像優(yōu)化。3、(本題5分)簡述在智能應急管理中,機器學習的作用。三、論述題(本大題共5個小題,共25分)1、(本題5分)論述在機器學習中,如何進行超參數(shù)調(diào)優(yōu),包括隨機搜索、網(wǎng)格搜索和基于模型的調(diào)參方法。分析不同調(diào)參方法的效率和效果。2、(本題5分)分析機器學習在醫(yī)療影像診斷中的應用,如X光、CT、MRI等圖像分析,討論其對醫(yī)療診斷準確性的提高。3、(本題5分)詳細闡述在文本情感分類中,多模態(tài)數(shù)據(jù)(如文本與圖像結(jié)合)的利用和融合方法。分析多模態(tài)信息對分類效果的提升。4、(本題5分)機器學習中的數(shù)據(jù)預處理包括哪些步驟?結(jié)合實際案例,分析其對模型性能的影響。5、(本題5分)論述機器
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度虛擬現(xiàn)實內(nèi)容制作合作股權協(xié)議書3篇
- 二零二五年度農(nóng)村土地互換與農(nóng)村能源建設合作協(xié)議2篇
- 二零二五年度企業(yè)內(nèi)部停車場車輛停放服務責任協(xié)議3篇
- 2025年度職業(yè)教育辦學許可證轉(zhuǎn)讓及就業(yè)安置協(xié)議3篇
- 二零二五年度典當物品鑒定與評估服務合同3篇
- 2025年度互聯(lián)網(wǎng)醫(yī)療加盟合作協(xié)議書3篇
- 二零二五年度互聯(lián)網(wǎng)公司員工離職保密與商業(yè)秘密保護更新協(xié)議2篇
- 2025年度內(nèi)河漁船出售轉(zhuǎn)讓與船舶交易資金監(jiān)管服務合同3篇
- 2025年度金融科技公司股東合伙人合作協(xié)議書3篇
- 二零二五年度房產(chǎn)轉(zhuǎn)讓背景下的環(huán)保責任協(xié)議3篇
- 湖南省部分學校2023-2024學年高二上學期期末聯(lián)合考試政治試卷 含解析
- 電大《人力資源管理》期末復習綜合練習題答案(2024年)
- 西師版數(shù)學(四上題)2023-2024學年度小學學業(yè)質(zhì)量監(jiān)測(試卷)
- 2022-2023學年廣東省廣州市白云區(qū)華南師大附屬太和實驗學校九年級(上)期末數(shù)學試卷(含答案)
- 2024年煤礦安全生產(chǎn)知識競賽題庫及答案(共100題)
- 強制報告制度課件
- 《礦山隱蔽致災因素普查規(guī)范》解讀培訓
- 2024年世界職業(yè)院校技能大賽中職組“節(jié)水系統(tǒng)安裝與維護組”賽項考試題庫(含答案)
- 醫(yī)生幫扶計劃和幫扶措施
- 東方電影學習通超星期末考試答案章節(jié)答案2024年
- 人教版四年級上冊數(shù)學數(shù)學復習資料
評論
0/150
提交評論