《電路分析基礎(chǔ)》課件第14章_第1頁
《電路分析基礎(chǔ)》課件第14章_第2頁
《電路分析基礎(chǔ)》課件第14章_第3頁
《電路分析基礎(chǔ)》課件第14章_第4頁
《電路分析基礎(chǔ)》課件第14章_第5頁
已閱讀5頁,還剩132頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

14.1磁場的基本物理量和基本性質(zhì)

14.2鐵磁物質(zhì)的磁化曲線

14.3磁路及磁路定律

14.4恒定磁通磁路的計算

14.5交流鐵芯線圈電路

14.6練習題及解答提示

習題14第14章磁路和鐵芯線圈電路在實際電子和電氣工程中,經(jīng)常應用各種機電能量或機電信號轉(zhuǎn)換設(shè)備,常見的有電機、變壓器、電磁鐵、電工測量儀表以及其他各種鐵磁元件,其本質(zhì)是磁和電的相互作用和相互轉(zhuǎn)換。在這些電氣設(shè)備中,不僅有電路的問題,同時還有磁路的問題,只有同時掌握了電路和磁路的基本理論,才能對各種電氣設(shè)備進行全面的分析。因此,研究磁和電的關(guān)系,掌握磁路的基本規(guī)律是非常必要的。

本章首先介紹磁場的基本知識,然后介紹鐵磁物質(zhì)的磁性能,磁路及其基本規(guī)律,在此基礎(chǔ)上,介紹恒定磁通磁路的計算,交變磁通磁路中的波形畸變和能量損耗,最后介紹鐵芯線圈的電路模型和分析方法。根據(jù)電磁場理論,一個運動電荷(電流)在它的周圍除產(chǎn)生電場外,還產(chǎn)生磁場,即磁場是由電流產(chǎn)生的。電氣設(shè)備中的磁場通常集中分布在由鐵磁物質(zhì)構(gòu)成的閉合路徑內(nèi),這樣的路徑稱為磁路,如圖14-1所示為一變壓器的磁路示意圖。

磁路問題就是局限于一定路徑內(nèi)的磁場問題,因此磁場的各個基本物理量也適用于磁路,對磁路的分析計算實際上是對電磁場的求解問題。14.1磁場的基本物理量和基本性質(zhì)圖14-1變壓器的磁路示意圖14.1.1磁場的基本物理量

1.磁感應強度

磁感應強度是磁場的基本物理量,是根據(jù)洛侖茲力定義的。它是一個矢量,用符號B表示,其方向與磁場的方向一致。運動電荷在磁場中受到磁場力的作用,當運動電荷與磁場的方向垂直時,它所受到的磁力最大,記為Fmax。

又由實驗可知,磁場中任意給定點的Fmax與運動電荷所帶的電量q和運動速度u都成正比,即

Fmax∝qv那么磁感應強度B的大小為

(14-1)

磁感應強度的大小只與該點磁場的性質(zhì)有關(guān),而與運動電荷的電量q和運動速度v無關(guān),對應磁場中的不同點,磁感應強度也不同,它是表示磁場內(nèi)某點的磁場強弱和方向的物理量,磁場愈強,磁感應強度越大。若磁場內(nèi)各點的磁感應強度的大小相等、方向相同,這樣的磁場稱為均勻磁場。在國際單位制(SI)中,磁力Fmax的單位是牛頓(N),電量q的單位是庫侖(C),速度v的單位是米/秒(m/s),則磁感應強度B的單位為特[斯拉](T),特斯拉也就是韋伯每平方米(Wb/m2),有時也用電磁制單位高斯(GS),1T相當于104GS。

2.磁通

穿過某一截面S的磁感應強度B的通量稱為磁通量,簡稱磁通。磁通是一個標量,用符號Φ來表示。它可用下式定義

(14-2)

可見,磁感應強度B在某截面S上的面積分就是通過該截面的磁通。

對于均勻磁場,磁感應強度B與垂直于磁場方向的面積S的乘積,稱為通過該面積的磁通Φ,即

Φ=BS

或(14-3)

由式(14-3)可見,磁感應強度在數(shù)值上可以看成與磁場方向垂直的單位面積所通過的磁通,故磁感應強度也稱為磁通密度。若用磁力線來描述磁場,使磁力線的疏密反映磁感應強度的大小,則通過某一面積的磁力線的總數(shù)就反映了通過該面積的磁通的大小,通過垂直于磁場方向的單位面積的磁力線數(shù)目就反映了該點的磁感應強度的大小。由于磁通的連續(xù)性,磁力線應是閉合的空間曲線。

磁通的參考方向與產(chǎn)生它的電流方向滿足右螺旋定則。在國際單位制(SI)中,磁通的單位是伏·秒,通常稱為韋[伯](Wb)。在工程上有時用電磁制單位麥克斯韋(Mx),1Wb相當于108Mx。

3.磁場強度

磁場強度是描述磁場的另一個物理量,它也是矢量,用符號H表示,它與磁感應強度B,磁介質(zhì)的磁導率μ之間有如下關(guān)系:

B=μH

(14-4)

由于鐵磁物質(zhì)的磁導率μ不是常量,因此在磁路中,式(14-4)所示的關(guān)系為非線性關(guān)系。

磁場中某點的磁場強度只取決于產(chǎn)生這個磁場的電流的分布,而與介質(zhì)無關(guān),也就是說磁場強度反映的是磁場和電流的依存關(guān)系。當電流一定時,同一點的磁場強度不因磁場的介質(zhì)不同而不同,但磁感應強度是與介質(zhì)的磁性有關(guān)的。在國際單位制(SI)中,磁場強度的單位是安/米(A/m)。在工程上有時用電磁制單位奧斯特(Oe),1A/m相當于4π×10-3Oe。

4.磁導率

磁導率是一個用來表示物質(zhì)的磁性質(zhì)的物理量,也就是用來衡量物質(zhì)導磁能力的物理量,用符號μ表示,定義為

(14-5)

真空的磁導率μ0=4π×10-7H/m,μ0是一個常數(shù),非鐵磁物質(zhì)的磁導率與μ0相差無幾,故一般可將其視為μ0進行計算,B=μ0H,B與H成正比,它們之間有線性關(guān)系。而鐵磁物質(zhì)的磁導率很大,且大多數(shù)鐵磁物質(zhì)的磁導率不是常數(shù),又B=μH,故B與H不成正比,它們之間為非線性關(guān)系。將其他物質(zhì)的磁導率μ與真空磁導率μ0的比稱做該物質(zhì)的相對磁導率,記為μr,則

(14-6)

非鐵磁物質(zhì)的μr≈1,即μ≈μ0;鐵磁物質(zhì)的μr很大,如硅鋼片的μr=6000~8000,而坡莫合金的μr可達1×105

左右。在國際單位制(SI)中,磁導率的單位是亨/米(H/m)。14.1.2磁場的基本性質(zhì)

磁場的基本性質(zhì)包括磁通連續(xù)性原理和安培環(huán)路定律,它們是分析磁路的基礎(chǔ)。

1.磁通連續(xù)性原理

磁通Φ是由式(14-2)定義的,而磁通連續(xù)性原理的內(nèi)容是:在磁場中,對磁感應強度的任意閉合面的積分為零,即

(14-7)

由于磁力線是閉合的空間曲線,顯然,穿進任一閉合面的磁通恒等于穿出此閉合面的磁通,式(14-7)的成立與磁場中的介質(zhì)分布無關(guān)。

2.安培環(huán)路定律

安培環(huán)路定律(也稱全電流定律)的內(nèi)容是:在磁場中,磁場強度沿任意閉合路徑的線積分,等于該閉合路徑所圍面積的全部電流的代數(shù)和,即

式中的是磁場強度矢量H沿任意閉合回路l(常取磁通作為閉合回路)的線積分,是穿過該閉合回線l所圍面積的電流的代數(shù)和,且該式與磁場中介質(zhì)的分布無關(guān)。(14-8)當電流的參考方向與閉合回線的繞行方向符合右螺旋定則時,該電流前取正號,反之取負號。在圖14-2(a)中,式(14-8)可表示為

對圖14-2(b)來說,取磁通作為閉合回線,且以其方向作為回線的繞行方向,則有

其中N為線圈的匝數(shù)。圖14-2安培環(huán)路定律示意圖鐵磁物質(zhì)鐵、鎳、鈷及其合金以及鐵氧體(又稱鐵淦氧)等都是構(gòu)成磁路的主要材料,它們的磁導率比真空磁導率μ0大得多,為其數(shù)十倍,數(shù)千倍,乃至數(shù)萬倍,且常與所在磁場的強弱及物質(zhì)磁狀態(tài)的歷史有關(guān),其磁導率μ不是常量。本節(jié)討論鐵磁物質(zhì)的磁化性質(zhì)。

鐵磁物質(zhì)的磁化性質(zhì)一般由磁化曲線即B—H曲線表示。由于磁場強度H是決定于產(chǎn)生外磁場的電流的,而磁感應

強度B相當于電流在真空中所產(chǎn)生磁場和物質(zhì)磁化后的附加磁場的疊加,所以B—H曲線表明了物質(zhì)的磁化效應。14.2鐵磁物質(zhì)的磁化曲線14.2.1起始磁化曲線與磁飽和性

鐵磁物質(zhì)之所以具有被磁化的特性,是因為該類物質(zhì)不同于其他物質(zhì),它具有磁疇的特殊結(jié)構(gòu),當有外磁場作用時,就會產(chǎn)生很強的與外磁場同方向的磁化磁場,使鐵磁物質(zhì)的磁感應強度大大增加,就是說鐵磁物質(zhì)被強烈地磁化了。鐵磁物質(zhì)的這一磁性能廣泛應用于各種電氣設(shè)備中,例如電機、變壓器及各種鐵磁元件的線圈中都放有鐵芯。在這種具有鐵芯的線圈中通入不大的勵磁電流,便可產(chǎn)生足夠大的磁通和磁感應強度。非鐵磁物質(zhì)沒有磁疇的結(jié)構(gòu),也就不具有磁化的特性。起始磁化曲線如圖14-3所示。真空中,B=μ0H,故B—H曲線是一條直線,如圖14-3中的直線①。曲線②即為起始磁化曲線,指鐵磁物質(zhì)從H=0,B=0開始磁化,該曲線一般可由實驗方法得出,在磁路的計算中非常重要。

可以看出,當外磁場由零逐漸增大時,磁感應強度B隨著磁場強度H開始增加較慢(oa1段),然后迅速增長(a1a2段),之后增長率減慢(a2a3段),逐漸趨向于飽和(a3a4段)。

由于這條曲線的形狀與人腿的形狀相似,故把a1點稱為跗點,a2點稱為膝點,a3點稱為飽和點,a3點以上曲線趨于一條直線,其斜率決定于真空的磁導率μ0。圖14-3中也給出了磁導率μ隨H的變化曲線,即曲線③。圖14-3鐵磁物質(zhì)起始磁化曲線

14.2.2磁滯回線與磁滯性

當鐵芯線圈中通有交變電流時,鐵芯就受到交變磁化,當電流變化一次時,磁感應強度B隨磁場強度H而變化的關(guān)系如圖14-4所示,稱為磁滯回線,它不同于起始磁化曲線。

圖14-4磁滯回線

如果把磁場強度由零增加到+Hm值,使鐵磁物質(zhì)達到磁飽和點a(不超過磁飽和點),相應的磁感應強度為Bm。當磁場強度H減小,磁感應強度B也隨之減小,但不是按原來上升的起始磁化曲線減小,而是沿著比起始磁化曲線稍高的曲線下降,即圖中的ab段。當H的值減小到零時,B的值不為零,這種磁感應強度的改變落后于磁場強度改變的現(xiàn)象稱為磁滯現(xiàn)象,簡稱磁滯。對應于H=0時的磁感應強度(圖中的Br)稱為剩余磁感應強度,簡稱剩磁。若要消去剩磁,需將鐵磁物質(zhì)反向磁化。當H在相反方向增加到Hc值時,B降為零。此磁場強度值Hc稱為矯頑磁場強度,簡稱矯頑力。當H繼續(xù)反向增加時,鐵磁物質(zhì)開始反向磁化,當H=-Hm時,反向磁化達到飽和點a′(不超過磁飽和點),當H由-Hm回到零時,磁感應強度沿a′b′變化而完成了一個循環(huán)。由圖14-4所示磁滯回線的形狀,可將鐵磁物質(zhì)分為兩大類。一類是軟磁材料,它的磁滯回線狹窄,回線面積較小,磁導率高,如硅鋼片、鐵鎳合金、鐵淦氧磁體、純鐵、鑄鐵、鑄鋼等都是軟磁材料。電機、變壓器的鐵芯就是用硅鋼片疊成的。另一類是硬磁材料,有較高的剩磁感應Br和較大的矯頑磁力Hc,它的磁滯回線較寬,如鎢鋼、鈷鋼等都是硬磁材料,用來制成永久磁鐵。軟磁材料和硬磁材料的磁滯回線如圖14-5所示。圖14-5軟磁材料和硬磁材料磁滯回線14.2.3基本磁化曲線

對于同一鐵磁物質(zhì)制成的鐵芯,取不同的Hm值的交變磁場進行反復磁化,將得到一系列磁滯回線,如圖14-6中虛線所示,將各磁滯回線頂點連成的曲線稱為基本磁化曲線,如圖14-6中實線所示。進行磁路計算時常用基本磁化曲線代替磁滯回線以得到簡化,而基本磁化曲線和初始磁化曲線是很接近的,工程上給出的磁化曲線都是基本磁化曲線,有時也用表格的形式給出,稱為磁化數(shù)據(jù)表,計算時可查閱。表14-1為鑄鋼及常用電工硅鋼片的磁化數(shù)據(jù)表。圖14-6基本磁化曲線表14-1常用鐵磁材料磁化數(shù)據(jù)表14.3.1磁路

為了用較小的電流產(chǎn)生足夠大的磁通(或磁感應強度),在電機、變壓器等各種鐵磁元件中,常用鐵磁物質(zhì)做成

一定形狀的鐵芯。由于鐵芯的磁導率較其他物質(zhì)高得多,所以磁通的絕大部分經(jīng)過鐵芯而形成一個閉合通路,這種

約束在限定鐵芯范圍內(nèi)的磁通通過的路徑,稱為磁路。圖14-7給出了幾種常見的電氣設(shè)備的磁路。14.3磁路及磁路定律圖14-7幾種常見磁路圖(a)是一種單相變壓器的磁路。

圖(b)和圖(c)是接觸器和繼電器的磁路。

圖(d)是直流電機的磁路。

圖(e)是電工儀表的磁路。

磁路中的磁通可以分為兩部分,絕大部分是通過磁路(包括氣隙)閉合的,該部分稱為主磁通,用Φ表示;小部分是穿出鐵芯的,通過磁路周圍非鐵磁物質(zhì)(包括空氣)而閉合的,該部分稱為漏磁通,用Φσ表示,如圖14-8(a)所示。工程中采取有效措施,使漏磁通只占總磁通的很小一部分,可將漏磁通略去不計;同時選定鐵芯的幾何中心閉合線作為主磁通的路徑,則圖14-8(a)可用圖14-8(b)來表示。圖14-8主磁通與漏磁通14.3.2磁路的基本物理量

磁路分析中所涉及的物理量與磁場中的物理量相同,只是增加了兩個新的物理量:磁通勢和磁壓降。

1.磁通勢

將圍繞磁路的環(huán)形線圈的電流i與其匝數(shù)N的乘積Ni稱為該線圈電流產(chǎn)生的磁通勢,也稱為磁動勢,簡稱磁勢,用符號Fm表示,即

Fm=Ni

(14-9)

磁通勢的方向與產(chǎn)生它的線圈電流之間符合右手螺旋定則。在國際單位制(SI)中,其單位為安[培](A),但有時也用安匝(At)。

磁通勢是產(chǎn)生磁通的激勵,磁路中磁通勢的作用類似于電路中電壓源的作用。

2.磁壓降

每段磁路中的磁場強度H與磁路長度l的乘積稱為該段磁路的磁壓降或磁位差,用符號Um表示,即

Um=Hl

(14-10)

磁壓降的方向與磁場強度H的方向一致。在國際單位制(SI)中,磁壓降的單位為安[培](A)。14.3.3磁路的基本定律

1.磁路的基爾霍夫定律

磁路的基爾霍夫定律由描述磁場性質(zhì)的磁通連續(xù)性原理和安培環(huán)路定律推導而得到的,它們是分析計算磁路的基礎(chǔ)。

1)磁路的基爾霍夫第一定律

由于磁通的連續(xù)性,如果忽略漏磁通,則可認為全部磁通都在磁路內(nèi)穿過,那么磁路就與電路相似,在一條支路內(nèi)處處具有相同的磁通。對于有分支磁路,如圖14-9所示,在磁路分支點a作閉合面。圖14-9有分支磁路根據(jù)磁通連續(xù)性原理,可知穿過閉合面的磁通代數(shù)和必為零,即

-Φ1+Φ2+Φ3=0或Φ1=Φ2+Φ3

將其寫成一般形式,即

(14-11)

式(14-11)為磁路的基爾霍夫第一定律表達式,其內(nèi)容是:在磁路的分支點所連各支路磁通的代數(shù)和等于零?;蛘哒f進入分支點閉合面的磁通之和等于流出分支點閉合面的磁通之和。

上述定律在形式上與電路的基爾霍夫電流定律(KCL)相似,故有時把此定律稱為磁路的基爾霍夫第一定律。

2)磁路的基爾霍夫第二定律

磁路可以分為截面積相等、材料相同的若干段,磁路中任意截面上的磁通的分布認為是均勻的,并且各段磁路中的磁場強度處處相同,方向與磁路中心線平行。那么各段磁路中的磁場強度H與dl方向相同,式(14-8)所表示的安培環(huán)路定律中的矢量點積則簡化為標量的乘積,即安培環(huán)路定律在磁路中可以簡化為如下形式:

或表示為

(14-12)

若引入磁通勢和磁壓降,可表示為

(14-13)

式(14-13)為磁路的基爾霍夫第二定律表達式,其內(nèi)容是:在磁路的任意閉合回路中,各段磁壓降的代數(shù)和等于各磁通勢的代數(shù)和。上述定律在形式上與電路的基爾霍夫電壓定律(KVL)相似,故有時把此定律稱為磁路的基爾霍夫第二定律。應用該定律時,要選一繞行方向,磁通的參考方向與繞行方向一致時,該段磁壓降取為正號,反之取負號;勵磁電流的參考方向與磁路回線繞行方向之間符合右手螺旋關(guān)系時,該磁通勢取正號,反之取負號。對于圖14-9所示磁路右側(cè)的閉合路徑,由磁路的安培環(huán)路定律,可寫為

H1l1+H2l2+H0l0+H3l3=N1i1-N2i2

式中H1,H2,H3,H0分別為l1,l2,l3,l0段的磁場強度,繞行方向為順時針方向。

2.磁路的歐姆定律

設(shè)在磁路中取出某一段由磁導率為μ的材料構(gòu)成的均勻磁路,其橫截面為S,長度為l,磁路中磁通為Φ,如圖14-10所示。則因,故該段的磁壓降(磁位差)為

式中

(14-14)(14-15)

稱為該段磁路的磁阻,磁阻的倒數(shù)稱為磁導,用Λm表示,即

在國際單位制(SI)中,磁阻的單位為每亨(H-1),磁導的單位為亨[利](H)。(14-16)圖14-10磁路段式(14-14)在形式上與電路的歐姆定律表達式相似,反映的是一段磁路磁通與磁壓降之間的約束關(guān)系,當Rm為常量(不隨Φ而變),則又稱為磁路的歐姆定律。需要注意的是,一般情況下不能應用磁路的歐姆定律進行計算,因為鐵磁物質(zhì)的磁導率不是常量,磁阻是非線性的。當對磁路作定性分析時,則可應用磁阻及磁導的概念。根據(jù)以上介紹的磁路基本定律,可見磁路與電路中的有關(guān)定律在形式上有相似之處,但兩者在本質(zhì)上是不同的。例如,電路中電流會由于開路而中斷,但磁路中有磁通勢則必然伴有磁通,即使磁路中有空氣隙存在,磁通并不中斷。電路中有電流一般就有功率損耗,但在恒定磁通下的磁路卻沒有功率損耗。磁路的計算涉及到磁路各部分的有關(guān)尺寸,但對集總參數(shù)電路來說,它的計算不涉及任何尺寸問題。

由于電路和磁路中的兩類約束方程的相似性,線性磁路(磁阻Rm為常數(shù))與線性電路的計算類似,如表14-2所示。下面舉例說明磁路的計算方法。表14-2電路與磁路對比

例14-1

磁路如圖14-11(a)所示,已知鐵芯平均長度l=

20cm,截面積S=1cm2,空氣隙長度l0=0.2mm,鐵芯材料的相對磁導率μr=1000,若需在磁路中產(chǎn)生磁通Φ=10-4Wb,試求所需的勵磁線圈的磁通勢Fm和空氣隙的磁壓降Um0。

圖14-11例14-1題圖

解為了便于分析,常用電路圖的概念畫出相應的磁路圖,如圖14-11(b)所示。

各部分磁阻可由式(14-15)求?。?/p>

空氣隙磁阻

鐵芯磁阻

由式(14-14)和式(14-13)可得

線圈的磁通勢

Fm=Um=Φ(Rm0+Rm)=10-4(1.59×106+1.59×106)=318A

空氣隙的磁壓降

Um0=ΦRm0=10-4×1.59×106=159A

由本例的計算結(jié)果可見,空氣隙雖然很短,它只占磁路平均長度的千分之一,但空氣隙的磁壓降卻占總磁通勢的一半。這是由于空氣的磁導率比鐵磁物質(zhì)的磁導率小得多的原因,很小的空氣隙會有很大的磁阻,因此會有大的磁壓降。恒定磁通磁路是指磁路中各勵磁線圈的電流是直流,即磁路中的磁通和磁通勢都是恒定的,有時也稱為直流磁路。

對磁路的計算一般分為兩類問題,一類是預先給定磁通(或磁感應強度),然后按照給定的磁通和磁路的結(jié)構(gòu)及材料去求所需的磁通勢。另一類問題是預先給定磁通勢,要求求出磁路中的磁通。14.4恒定磁通磁路的計算恒定磁通磁路的線圈中不會產(chǎn)生感應電動勢。從電路的角度來看,當線圈兩端加直流電壓時,其電流只取決于線圈電阻,與磁路的性質(zhì)無關(guān);從磁路的歐姆定律可知,磁路的磁通勢也是恒定的,但磁通的大小卻與磁路的性質(zhì)有關(guān),磁通隨磁阻的增加而減小,而鐵磁物質(zhì)的磁阻又與磁路的飽和程度有關(guān),是非線性的。

恒定磁通磁路的計算常分為:無分支恒定磁通磁路和有分支恒定磁通磁路的計算,在介紹各種磁路計算之前,先對有關(guān)計算作一說明。

1.磁路的長度

在磁路計算中,一般都取其平均長度(中心線長度)作為磁路的長度。

2.磁路的面積

(1)鐵磁物質(zhì)部分。

磁路中鐵磁物質(zhì)部分的截面積用磁路的幾何尺寸直接計算。若鐵芯由涂有絕緣漆的電工硅鋼片疊成時,實際鐵芯有效面積比由幾何尺寸算出的截面積要小,要考慮一個小于1的疊裝因數(shù)KFe,KFe也稱填充因數(shù),KFe與硅鋼片的厚度、表面絕緣層的厚度及疊裝的松緊程度有關(guān),一般在0.9~0.97之間。

(2)空氣隙部分。

磁路中有空氣隙時,氣隙邊緣的磁感應線將有向外擴張的趨勢,稱為邊緣效應,氣隙越長,邊緣效應越顯著,其結(jié)果使有效面積大于鐵芯的截面積,如圖14-12所示。

工程上一般認為,當氣隙長度不超過矩形截面短邊或圓形截面半徑的1/5時,可用下面兩式計算氣隙的有效面積。矩形截面

S0=(a+l0)(b+l0)≈ab+(a+b)l0

(14-17)

圓形截面

S0=π(r+l0)2≈πr2+2πrl0

(14-18)圖14-12氣隙的邊緣效應

以上兩式中,l0為氣隙長度,a、b為矩形截面的長和寬,r為圓形截面的半徑。通常當氣隙長度很小時,則可用鐵芯的截面積替代空氣隙的截面積進行計算。14.4.1恒定磁通無分支磁路計算

1.已知磁通求磁通勢

無分支磁路的主要特點在于不計及漏磁通時,磁路中處處都有相等的(主)磁通Φ,如已知磁通和各磁路段的材料及尺寸,可按下述步驟去求磁通勢:

(1)將磁路按材料和截面積的不同分成若干段,要求每一段磁路具有相同的材料和截面積。

(2)按磁路所給尺寸分別計算各段的截面積和平均長度。

(3)根據(jù)已知的磁通計算各磁路段的磁感應強度

,由于各磁路段截面積不同,因此磁感應強度就不同。

(4)計算相應各段磁路的磁場強度H。

需查閱對應鐵磁材料的基本磁化曲線或磁化數(shù)據(jù)表,求得每一磁路段的磁場強度。

對于空氣隙,可按下式計算磁場強度

(5)求每一磁路段的磁壓降Um(=Hl)。(14-19)

(6)由式(14-13)求出所需磁通勢Fm(=NI)。

將上述計算步驟歸納如下:

下面用例題來說明磁路的計算。B-H曲線

例14-2

圖14-13(a)所示磁路,其尺寸(mm)已標明在圖上,所用硅鋼片的基本磁化曲線如圖14-13(b)所示,設(shè)填充因數(shù)KKe=0.90,勵磁繞組的匝數(shù)為120,求在該磁路中獲得Φ=15×10-4Wb所需的電流。

圖14-13例14-2題圖

(1)該磁路為無分支磁路。磁路由硅鋼片和空氣隙構(gòu)成,硅鋼片部分有兩種截面積,故應分為三段來計算。

(2)求每段的截面積和平均長度。

鐵芯1段

鐵芯2、3段

氣隙段

(3)求每磁路段的磁感應強度。

(4)求每磁路段的磁場強度。

由圖14-13(b)所示曲線查得

H1=170A/m,H2=4500A/m

由式(14-19)得空氣隙的磁場強度

H0=0.8×106B0=10.53×105A/m

(5)求每磁路段的磁壓降

Um1=H1l1=170×0.16=27.2A

Um2=H2l2=4500×0.398=1791A

Um0=H0l0=10.53×105×0.002=2106A

(6)求總磁通勢。

Fm=Um1+Um2+Um0=27.2+1791+2106=3924A

由于Fm=NI,故勵磁電流

本例說明:氣隙雖小,但對磁路的磁壓分配影響很大;l2部分的截面積較小,在磁通Φ=15×10-4Wb作用下已處于飽和狀態(tài)(見圖14-13(b)),使這部分硅鋼片的磁導率顯著下降,故Um2較大,否則空氣隙的磁位差所占比例還要高。

例14-3

有一環(huán)形鐵芯線圈,其內(nèi)徑為10cm,外徑為15cm,鐵芯材料為鑄鋼。磁路中含有一空氣隙,其長度等于0.2cm,設(shè)勵磁線圈中通有1A的電流,如要得到0.9T的磁感應強度,試求線圈匝數(shù)。

解磁路的平均長度

從表14-1所示的鑄鋼材料查出,當B=0.9T時,對應的H1=798A/m,則

鐵芯段H1l1=798×(39.2-0.2)×10-2=311A氣隙段

總磁通勢

所需線圈匝數(shù)

2.已知磁通勢求磁通

由于磁路的非線性,各磁路段的磁阻與磁通的量值有關(guān),在沒有求出磁路的磁通之前,不能把各磁路段的磁位差求出來。因此,對已知磁通勢求磁通問題,一般可用試探法,其計算步驟如下:

(1)先假設(shè)一個磁通值,按此磁通用已知磁通求磁通勢的計算步驟求出磁通勢。

(2)將計算所得磁通勢與已知磁通勢加以比較。修正第一次假設(shè)的磁通值,并反復修正,直到所得磁通勢與已知磁通勢相近為止。下面通過例題來說明具體的計算。

例14-4

圖14-14(a)所示磁路中,空氣隙的長度l0=1mm,磁路橫截面面積S=16cm2,中心線長度l=50cm,線圈的匝數(shù)N=1250,勵磁電流I=800mA,所用鑄鋼材料的基本磁化曲線如圖14-14(b),求磁路中的磁通。

圖14-14例14-4題圖

解此磁路由兩段構(gòu)成,各磁路段的面積和平均長度為鑄鋼段

S1=16cm2=16×10-4m2

l1≈50cm=0.5m

氣隙段(為簡化起見,忽略空氣隙的邊緣效應)

S0≈16×10-4m2

l0=0.1cm=1×10-3m

磁路中的磁通勢為

Fm=NI=1250×800×10-3=1000A由于空氣隙的磁阻較大,用試探法時可暫設(shè)整個磁路磁通勢都用于空氣隙中,這樣計算出的磁通作為第1次試探值,記為Φ′,即

由于設(shè)S1=S0,故得磁感應強度為

由圖(b)查得

H′=1410A/m空氣隙中的磁場強度

磁通勢為

由于,則要進行第2、3…次試探,直至誤差小于某一給定值為止。從第2次試探起,各次試探值與前一次試探值之間可按下式聯(lián)系起來。

各次試探結(jié)果見表14-3。表14-3例14-4用表由表14-3可見,可將第4次試探值作為最后的結(jié)果,即所求的磁通

Φ=Φ4=13.11×10-4Wb

另外,還可用試探法和作圖相結(jié)合的方法,以便更快、更準確地找到所求的磁通。如圖14-15所示,如果用試探法已求得Φ1、Φ2、Φ3,都與所求的磁通Φ有偏差,可作出Fm—Φ

曲線,將a1、a2、a3點用光滑的曲線連接起來,在這條曲線上,便可得到所求的磁通Φ,也就是a點所對應的磁通。

顯然,試探法實質(zhì)上是已知磁路磁通求磁通勢的多次計算方法。圖14-15Fm—Φ曲線

14.4.2恒定磁通對稱分支磁路計算

對稱分支磁路在實際應用中很常見,如圖14-7(b)所示的接觸器磁路、圖14-7(d)所示的電機磁路,都屬于這類電路。這種磁路存在著對稱軸,如圖14-16所示磁路中的AB軸。AB軸兩側(cè)磁路的幾何形狀完全對稱,磁路的磁通也是對稱的。當已知對稱分支磁路的磁通求磁通勢時,只需要取對稱軸的一側(cè)磁路計算(將對稱分支磁路轉(zhuǎn)化成了無分支磁路),即可求出整個磁路所需的磁通勢。圖14-16對稱分支磁路需要注意的是,取對稱軸一側(cè)磁路計算時,中間鐵芯柱(對稱軸)的面積為原鐵芯柱的一半,中間柱(對稱軸)的磁通也減為原來的一半。但磁感應強度和磁通勢卻保持不變。這種磁路的計算也有兩類問題:一類是已知磁通求磁通勢;另一類是已知磁通勢求磁通。具體的計算步驟及方法同無分支磁路。

例14-5

對稱分支鑄鋼磁路如圖14-16所示,欲在中間鐵芯柱產(chǎn)生磁通Φ=1.8×10-4Wb的磁通,求所需磁通勢。圖中單位為cm。

解以AB為對稱軸,取對稱軸的一側(cè)磁路進行計算,如圖14-16(b)所示,將對稱分支磁路的計算轉(zhuǎn)化為無分支磁路的計算,則圖(b)中磁路的磁通為原來的一半,即

由磁路計算步驟計算如下:

(1)無分支磁路的截面、材料相同,為一段磁路段。

(2)磁路段的截面、平均長度分別為

S=1×1=1cm2=10-4m2

l=2(7.5-1)+2(10-1)=31cm=0.31m

(3)磁路段磁感應強度為

(4)由表14-1,得

H=798A/m

(5)磁路的磁壓降為

Um=Hl=798×0.31=247.4A

(6)磁通勢為

Fm=Hl=247.4A

對于有分支不對稱磁路的計算比較復雜,但分析的依據(jù)仍然是磁通連續(xù)性原理和安培環(huán)路定律以及各磁路段材料的磁化曲線和結(jié)構(gòu)尺寸。上節(jié)介紹的是直流激勵情況下鐵芯線圈的穩(wěn)定狀態(tài),當線圈電壓給定,其電流決定于線圈電阻,與磁路情況無關(guān),恒定磁通的磁路中沒有功率損耗。本節(jié)介紹正弦激勵下鐵芯線圈電路的穩(wěn)定狀態(tài),由于電流是交變的,會引起感應電壓,電路中的電壓、電流關(guān)系與磁路有關(guān),且交變的磁通使鐵芯交變磁化,產(chǎn)生功率損耗,情況要復雜得多。14.5交流鐵芯線圈電路14.5.1線圈電壓和磁通的關(guān)系

如圖14-17所示的交流鐵芯線圈,忽略線圈電阻及漏磁通,并選擇線圈電壓u、電流i、磁通Φ及感應電動勢e的參考方向如圖所示。

根據(jù)電磁感應定律,得

圖14-17交流鐵芯線圈

其中N為線圈的匝數(shù)。由式(14-21)可見,當電壓為正弦量時,磁通也是正弦量,為了得到它們之間的關(guān)系,設(shè)磁通

Φ=Φmsinωt

可見電壓的相位比磁通超前90°,并得感應電壓的有效值與主磁通的最大值的關(guān)系為

(14-22)

(14-23)式(14-23)是常用的重要公式,該式表明:

(1)電源的頻率及線圈的匝數(shù)一定時,若線圈電壓的有效值U不變,則主磁通的最大值Φm不變。

(2)線圈電壓的有效值改變時,Φm與U成正比地改變,而與磁路情況無關(guān),但電流則與磁路有關(guān)。

(3)式(14-23)是在不計線圈電阻和漏磁通的情況下推得的,當給定正弦電壓激勵時,磁通最大值已基本確定,并

基本保持為正弦波形。14.5.2交變磁通電流和磁通的波形

在正弦電壓作用下,鐵芯線圈中的電流i和磁通Φ不是線性關(guān)系,i與Φ的關(guān)系可根據(jù)基本磁化曲線求得,由圖14-17,有Φ=BS,而勵磁電流i=Hl/N,所以只要把鐵芯的基本磁化曲線上B的坐標乘以S,H的坐標乘以l/N,即可獲得表示鐵芯特性的Φ—i曲線,如圖14-18(a)所示,其形狀與B—H曲線相似。圖14-18交變磁通電流和磁通的波形由前述電壓與磁通波形關(guān)系可知,當電壓為正弦波時,磁通也為正弦波,但電流卻是具有尖頂?shù)姆钦也?,這種波形畸變顯然是由Φ—i曲線的非線性引起的,其實質(zhì)是由于磁飽和所造成的。電壓越高,磁通越大,鐵芯飽和越嚴重,則電流波形畸變后變得更尖。若電壓與磁通的振幅都較小,鐵芯沒有飽和,則電流波形將更接近正弦波。

當電流作正弦變化且工作至飽和區(qū)域時,磁通具有平頂波形,如圖14-18(b)所示。

由圖14-18可見,由于Φ—i曲線的對稱性,非正弦的電流和磁通波形都是奇諧波函數(shù),主要含有三次諧波,且隨著鐵芯飽和程度的提高,三次諧波分量就越顯著。14.5.3功率損耗

在交流鐵芯線圈中,如果磁通隨時間變化,鐵磁物質(zhì)的磁滯現(xiàn)象會產(chǎn)生磁滯損耗,電磁感應現(xiàn)象會在鐵磁物質(zhì)中產(chǎn)生渦流,引起渦流損耗。通常把磁滯損耗和渦流損耗的總和稱為磁損耗,或稱為鐵芯損耗,簡稱鐵損。

1.磁滯損耗

磁滯損耗功率與鐵磁物質(zhì)磁滯回線的面積成正比。對同一鐵芯,磁滯回線的形狀與磁感應強度的最大值Bm有關(guān)。工程上常用下式計算磁滯損耗。

式中Bm為磁感應強度最大值,單位為T;n由Bm值決定,當Bm<1T時,取n=1.6;當Bm>1.6T時,取n=2;f為工作頻率,單位為Hz;σn是與材料有關(guān)的系數(shù),取決于所用單位;V為鐵芯體積,單位為m3;Ph為磁滯損耗,單位為W。(14-24)

2.渦流損耗

鐵芯中的磁通變化時,不僅線圈中產(chǎn)生感應電動勢,鐵芯中也產(chǎn)生感應電動勢,鐵芯中的感應電動勢使鐵芯中產(chǎn)生旋渦狀的電流,稱為渦流。渦流在鐵芯中垂直于磁通方向的平面內(nèi)流動,如圖14-19所示,圖(a)為實心鐵芯,圖(b)為鋼片疊裝鐵芯。

渦流會消耗能量使鐵芯發(fā)熱,這種能量損耗稱為渦流損耗。

工程中常用下式計算渦流損耗

(14-25)圖14-19鐵芯中的渦流式中σe為與鐵芯材料的電阻率、厚度及磁通波形有關(guān)的系數(shù),Pe為渦流損耗,單位為W。

在電機、變壓器等電磁設(shè)備中,常用兩種方法減少渦流損耗,一是增大鐵芯材料的電阻率,比如可在鋼片中滲入硅使其電阻率大為提高。二是把鐵芯沿磁場方向剖分為許多薄片相互絕緣后再疊合成鐵芯,可增大鐵芯中渦流路徑的電阻。這兩種方法都能有效地減少渦流。在工頻下采用的硅鋼片有0.35mm和0.5mm兩種規(guī)格,而在高頻時常采用鐵粉芯或鐵淦氧磁體,這些材料有更大的電阻率。而在有些場合,渦流也是有用的,例如在冶金、機械生產(chǎn)中所用的高頻熔煉、高頻焊接以及各種感應加熱等都是渦流原理的應用。

鐵損會使鐵芯發(fā)熱、溫度升高,對電機、變壓器的運行性能影響很大,在實際應用中應采取有效措施,盡量減少鐵損。14.5.4交流鐵芯線圈的電路模型

含鐵芯的線圈是常見的電路器件(元件),由于鐵磁物質(zhì)的磁飽和性,磁滯性及鐵損現(xiàn)象的存在,對其難于建立

準確的電路模型而進行精確的分析,本節(jié)利用等效正弦波的方法建立鐵芯線圈在交流電路中的近似電路模型,以便于用相量法進行分析計算。

1.忽略線圈電阻和漏磁通的作用

當圖14-20(a)所示的鐵芯線圈中通以交變電流時,其中便有交變磁通。

假設(shè)線圈電阻上電壓為uR,漏磁通在線圈上的感應電壓為uσ,主磁通在線圈上的感應電壓為u。

當忽略了線圈電阻和漏磁通時,則有線圈端電壓u1≈u。圖14-20鐵芯線圈的電壓電流關(guān)系

當線圈兩端電壓u1為正弦量時,由于,主磁通Φ也是正弦量,由圖14-18可知,此時電流為非正弦量,為簡化計算便于應用相量法,采用等效正弦電流替代實際非正弦電流,其條件是兩者的有效值相等,且有功功率不變。設(shè)主磁通Φ=Φmsin(ωt),則

其中,N為線圈的匝數(shù),則感應電壓的有效值

式中Bm為磁感應強度最大值。由此得到圖14-20(b)所示的相量圖,圖中等效電流相量有兩個分量,分量與電壓相量同相(用來計及鐵芯損耗),為電流的有功分量;分量與磁通相量

同相,滯后電壓的相位為π/2,稱為鐵芯的磁化電流,為勵磁電流的無功分量。通常>>

,α非常小,稱為損耗角。這樣便得到了圖14-20(c)所示的等效電路模型。

等效電路模型由兩條并聯(lián)支路組成,一條支路為電導G0,另一支路為電感L0。假設(shè)P、Q分別表示鐵芯的有功功率和無功功率,則有

P=IaU,Q=IrU

P和Q與Bm的關(guān)系是比較復雜的,按交變磁通磁路的觀點才可嚴格計算,由式(14-26)可見,一般來說電導G0和電感L0都不是常數(shù),而是隨Bm或U而變,故在等效電路模型中均用非線性元件表示。(14-26)

2.計及線圈電阻和漏磁通的作用

線圈電阻R上的電壓

漏磁通產(chǎn)生的感應電壓

式中Lσ=ψσ/I為漏電感,由于漏磁通主要經(jīng)過空氣閉合,可認為ψσ與I之間為線性關(guān)系,漏電感Lσ可視為常數(shù),則

(14-27)式中,為線圈電阻上的電壓,對應的損耗PCu=RI2,稱為銅損;為漏磁通產(chǎn)生的感應電壓;為主磁通的感應電壓。相應的電路模型及相量圖如圖14-21所示。圖中UR和Uσ一般僅為U的長度的百分之幾,圖中所畫是有意放大的。

圖14-21鐵芯線圈的電路模型及相量圖

例14-6

有一鐵芯線圈,加電壓u=311cos314tV,其中電流i=0.8cos(314t-85°)+0.25cos(942t-105°)A,電流不為正弦量,試求等效正弦電流。

(1)等效正弦電流的有效值等于非正弦周期電流的有效值,則

(2)等效正弦電流的有功功率等于非正弦周期電流的有功功率,則

(3)求正弦電流與正弦電壓之間的相位差。由于P=

UIcosφ,則

得等效正弦電流為

例14-7

已知鐵芯線圈電阻為0.1Ω,漏磁感抗為0.8Ω,外加交流電壓U1=100V,測得電流I=10A,有功功率P=200W,試求線圈的銅損、鐵損,主磁通產(chǎn)生的感應電壓U和磁化電流Ir。

解鐵芯線圈的電路模型如圖14-22所示。

鐵損

PFe=P-PCu=P-RI2=200-0.1×102=190W圖14-22例14-7題圖功率因數(shù)

則φ=arccos0.2=78.5°

取相量圖如圖

14-22所示。

由式(14-27),得主磁通產(chǎn)生的感應電壓為

得U=92V由相量圖,得磁化電流

Ir=Isin78.1°=10sin78.1°=9.8A

相量圖中將放大了,以便于看清楚各相量間關(guān)系。

1.具有空氣隙的鐵芯線圈如圖14-23所示,鐵芯由鑄鋼制成,尺寸單位為cm,若勵磁線圈的匝數(shù)為1764,試求線圈內(nèi)通過多大電流時,在空氣隙中才能產(chǎn)生0.00144Wb的磁通。

提示:這是一個無分支磁路,已知磁通,求磁通勢的問題。首先將磁路分段,計算各段的截面積和長度;由B=Φ/S計算各段的磁感應強度;根據(jù)鑄鋼的磁化數(shù)據(jù)表(表14-1)查出對應各段的磁場強度,最后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論