版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
荊州市重點(diǎn)中學(xué)2025屆高三下第一次測(cè)試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.元代數(shù)學(xué)家朱世杰的數(shù)學(xué)名著《算術(shù)啟蒙》是中國(guó)古代代數(shù)學(xué)的通論,其中關(guān)于“松竹并生”的問題:松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.下圖是源于其思想的一個(gè)程序圖,若,,則輸出的()A.3 B.4 C.5 D.62.函數(shù)(或)的圖象大致是()A. B. C. D.3.已知,,若,則實(shí)數(shù)的值是()A.-1 B.7 C.1 D.1或74.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.5.雙曲線的漸近線方程為()A. B. C. D.6.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.7.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.8.若集合,,則A. B. C. D.9.2019年某校迎國(guó)慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場(chǎng)比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.1210.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.11.已知,,,則,,的大小關(guān)系為()A. B. C. D.12.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.二、填空題:本題共4小題,每小題5分,共20分。13.過直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則的最小值是______.14.已知,滿足約束條件,則的最小值為______.15.在的二項(xiàng)展開式中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則該二項(xiàng)展開式中的常數(shù)項(xiàng)等于_____.16.展開式中的系數(shù)為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)證明:.18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知函數(shù)(),且只有一個(gè)零點(diǎn).(1)求實(shí)數(shù)a的值;(2)若,且,證明:.20.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對(duì)于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.21.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】分析:根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為;根據(jù)流程圖中的可知,每次循環(huán)的值應(yīng)是一個(gè)等比數(shù)列,公比為,根據(jù)每次循環(huán)得到的的值的大小決定循環(huán)的次數(shù)即可.詳解:記執(zhí)行第次循環(huán)時(shí),的值記為有,則有;記執(zhí)行第次循環(huán)時(shí),的值記為有,則有.令,則有,故,故選B.點(diǎn)睛:本題為算法中的循環(huán)結(jié)構(gòu)和數(shù)列通項(xiàng)的綜合,屬于中檔題,解題時(shí)注意流程圖中蘊(yùn)含的數(shù)列關(guān)系(比如相鄰項(xiàng)滿足等比數(shù)列、等差數(shù)列的定義,是否是求數(shù)列的前和、前項(xiàng)積等).2、A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.3、C【解析】
根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,化簡(jiǎn)即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運(yùn)算,代入化簡(jiǎn)可得.∴解得.故選:C.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.4、D【解析】
根據(jù)框圖,模擬程序運(yùn)行,即可求出答案.【詳解】運(yùn)行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點(diǎn)睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.5、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于容易題.6、B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問題轉(zhuǎn)化為的零點(diǎn)問題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)問題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問題的能力,屬于中檔題.7、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。8、C【解析】
解一元次二次不等式得或,利用集合的交集運(yùn)算求得.【詳解】因?yàn)榛颍?,所以,故選C.【點(diǎn)睛】本題考查集合的交運(yùn)算,屬于容易題.9、D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.10、C【解析】
可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對(duì)數(shù)的運(yùn)算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【詳解】解:因?yàn)椋?,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點(diǎn)睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個(gè)函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.11、D【解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對(duì)數(shù)式比較大小,屬于中檔題.12、A【解析】
根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因?yàn)榱睿瑒t,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:【點(diǎn)睛】本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.14、2【解析】
作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.15、1【解析】
由題意可得,再利用二項(xiàng)展開式的通項(xiàng)公式,求得二項(xiàng)展開式常數(shù)項(xiàng)的值.【詳解】的二項(xiàng)展開式的中,只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,,通項(xiàng)公式為,令,求得,可得二項(xiàng)展開式常數(shù)項(xiàng)等于,故答案為1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.16、【解析】
把按照二項(xiàng)式定理展開,可得的展開式中的系數(shù).【詳解】解:,故它的展開式中的系數(shù)為,故答案為:.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),.(Ⅱ)見解析【解析】
(1)由,分和兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由題,得,利用等比數(shù)列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當(dāng)時(shí),,得;當(dāng)時(shí),,整理,得.?dāng)?shù)列是以1為首項(xiàng),2為公比的等比數(shù)列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點(diǎn)睛】本題主要考查根據(jù)的關(guān)系式求通項(xiàng)公式以及利用等比數(shù)列的前n項(xiàng)和公式求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.18、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫妫?,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.【點(diǎn)睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡(jiǎn),屬中檔題.19、(1)(2)證明見解析【解析】
(1)求導(dǎo)可得在上,在上,所以函數(shù)在時(shí),取最小值,由函數(shù)只有一個(gè)零點(diǎn),觀察可知?jiǎng)t有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因?yàn)闀r(shí),為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因?yàn)?,所以,令得,,且,,在上;在上;所以函?shù)在時(shí),取最小值,當(dāng)最小值為0時(shí),函數(shù)只有一個(gè)零點(diǎn),易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時(shí),為增函數(shù),所以,即.【點(diǎn)睛】本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問題的能力,及邏輯推理能力,難度困難.20、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對(duì)分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時(shí),.解得.當(dāng)時(shí),解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時(shí),由題意,當(dāng)時(shí),恒成立.,∴當(dāng)時(shí),恒成立,單調(diào)遞減.又,∴當(dāng)時(shí),恒成立,即.∴對(duì)于,恒成立.(3)因?yàn)椋桑?)知,當(dāng)時(shí),恒成立,即對(duì)于,,不存在滿足條件的;當(dāng)時(shí),對(duì)于,,此時(shí).∴,即恒成立,不存在滿足條件的;當(dāng)時(shí),令,可知與符號(hào)相同,當(dāng)時(shí),,,單調(diào)遞減.∴當(dāng)時(shí),,即恒成立.綜上,的取值范圍為.點(diǎn)睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問一個(gè)是恒成立問題,一個(gè)是存在性問題,要注意取值是最大值還是最小值.21、解:設(shè)特征向量為α=對(duì)應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)?,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,考查逆矩陣.22、(1)證明見解析(2)【解析】
(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 營(yíng)養(yǎng)食品的植物基替代原料研究考核試卷
- 2025年度新型保溫材料外墻巖棉板采購(gòu)合同3篇
- 2025版酒店客房衛(wèi)生間垃圾桶更換施工合同3篇
- 《三壘股份并購(gòu)中業(yè)績(jī)承諾動(dòng)因及效果研究》
- 《五味子酚體外代謝研究》
- 2025版互聯(lián)網(wǎng)企業(yè)間網(wǎng)絡(luò)安全保密與信息安全保障協(xié)議3篇
- 《動(dòng)漫元素在學(xué)前科普教育中的應(yīng)用研究》
- 智能充電器的課程設(shè)計(jì)
- 2025版含房屋產(chǎn)權(quán)證明及權(quán)屬來源的二手房買賣合同3篇
- 2025年度城市綠化提升施工合同費(fèi)用及效果評(píng)估協(xié)議3篇
- 事業(yè)單位年度考核實(shí)施方案
- CJJ 169-2012城鎮(zhèn)道路路面設(shè)計(jì)規(guī)范
- 現(xiàn)代機(jī)械工程圖學(xué) 課件 第10章-裝配圖
- 新概念英語第一冊(cè)1-72課測(cè)試題
- 天貓售后工作總結(jié)
- 國(guó)賽一等獎(jiǎng)經(jīng)驗(yàn)分享
- 2024年試驗(yàn)箱行業(yè)未來三年發(fā)展洞察報(bào)告
- 江西省萍鄉(xiāng)市2023-2024學(xué)年高一上學(xué)期期末生物試題
- 《性格決定命運(yùn)》課件
- 音樂行業(yè)商業(yè)計(jì)劃書
- 電氣設(shè)備交接試驗(yàn)
評(píng)論
0/150
提交評(píng)論