運城師范高等??茖W(xué)校《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
運城師范高等??茖W(xué)?!度斯ぶ悄軐?dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
運城師范高等??茖W(xué)校《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
運城師范高等??茖W(xué)校《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
運城師范高等??茖W(xué)校《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁運城師范高等??茖W(xué)校

《人工智能導(dǎo)論雙語》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的自然語言生成中,故事生成是一個富有創(chuàng)意的任務(wù)。假設(shè)我們要讓計算機生成一個富有想象力的童話故事,以下關(guān)于故事生成的挑戰(zhàn),哪一項是不正確的?()A.創(chuàng)造新穎和有趣的情節(jié)B.保持故事的邏輯連貫性C.符合特定的文化和社會背景D.故事生成不需要考慮讀者的喜好和期望2、在人工智能的發(fā)展中,算力的需求不斷增長。假設(shè)要訓(xùn)練一個大型的人工智能模型,以下關(guān)于算力的描述,正確的是:()A.普通的個人電腦就能夠滿足訓(xùn)練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進,軟件優(yōu)化的作用不大C.云計算平臺可以提供強大的算力支持,幫助研究人員和企業(yè)訓(xùn)練復(fù)雜的人工智能模型D.算力的增長對人工智能模型的性能提升沒有實質(zhì)性的幫助3、人工智能中的弱人工智能和強人工智能是兩個不同的概念。假設(shè)我們在討論人工智能的發(fā)展階段,以下關(guān)于弱人工智能和強人工智能的描述,哪一項是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強人工智能目前已經(jīng)廣泛應(yīng)用于各個領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強人工智能的關(guān)鍵在于計算能力4、人工智能在法律領(lǐng)域的輔助決策中具有一定作用。假設(shè)要利用人工智能協(xié)助法官判斷案件,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.分析大量的法律案例和條文,提供相關(guān)的參考和建議B.利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)案件中的潛在規(guī)律和模式C.人工智能的判斷結(jié)果可以直接作為最終的法律裁決,無需法官審查D.幫助法官提高決策的效率和準(zhǔn)確性,但最終決策權(quán)仍在法官手中5、情感分析是自然語言處理中的一個重要任務(wù)。以下關(guān)于情感分析的描述,不準(zhǔn)確的是()A.情感分析旨在判斷文本所表達的情感傾向,如積極、消極或中性B.可以基于詞典、機器學(xué)習(xí)算法或深度學(xué)習(xí)模型來進行情感分析C.情感分析在社交媒體監(jiān)測、客戶反饋分析等方面有廣泛的應(yīng)用D.情感分析的結(jié)果總是準(zhǔn)確無誤的,不受文本的復(fù)雜性和多義性影響6、在人工智能的聚類分析中,例如將客戶按照消費行為進行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進行分組D.隨機聚類算法,隨機分配數(shù)據(jù)到不同組7、在一個利用人工智能進行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個方面的考慮可能是至關(guān)重要的?()A.實時數(shù)據(jù)采集和處理B.精準(zhǔn)的預(yù)測模型C.多目標(biāo)優(yōu)化策略D.以上都是8、在人工智能的研究中,強化學(xué)習(xí)被廣泛應(yīng)用于智能體的決策和優(yōu)化問題。假設(shè)一個智能機器人需要在復(fù)雜的環(huán)境中學(xué)習(xí)如何行走并避開障礙物,以最快的速度到達目標(biāo)位置。在這種情況下,以下哪種強化學(xué)習(xí)算法能夠使機器人更快地學(xué)習(xí)到有效的策略,同時具有較好的泛化能力?()A.Q-learningB.SARSAC.策略梯度算法D.蒙特卡羅方法9、當(dāng)利用人工智能進行推薦系統(tǒng)的設(shè)計,例如為用戶推薦個性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是10、在人工智能的語音處理領(lǐng)域,語音合成技術(shù)旨在生成自然流暢的人類語音。假設(shè)要開發(fā)一個能夠為有聲讀物生成逼真語音的系統(tǒng),需要考慮語音的韻律、語調(diào)等因素。以下哪種語音合成方法在生成高質(zhì)量、富有表現(xiàn)力的語音方面表現(xiàn)更為突出?()A.拼接式語音合成B.參數(shù)式語音合成C.基于深度學(xué)習(xí)的端到端語音合成D.基于規(guī)則的語音合成11、人工智能中的強化學(xué)習(xí)算法可以用于優(yōu)化資源分配。假設(shè)一個數(shù)據(jù)中心要通過人工智能分配計算資源,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.根據(jù)服務(wù)器負載和任務(wù)需求,動態(tài)調(diào)整資源分配策略B.以最小化能耗和提高服務(wù)質(zhì)量為目標(biāo),優(yōu)化資源利用效率C.強化學(xué)習(xí)可以快速適應(yīng)數(shù)據(jù)中心的變化,無需人工重新配置D.強化學(xué)習(xí)算法在資源分配中總是能夠找到最優(yōu)解,不存在次優(yōu)情況12、當(dāng)利用人工智能進行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機器學(xué)習(xí)C.藥物臨床試驗數(shù)據(jù)和統(tǒng)計分析D.以上都是13、人工智能中的情感分析旨在判斷文本所表達的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價情感,以下哪種方法可能不太適用?()A.基于詞典的方法B.基于機器學(xué)習(xí)的方法C.基于規(guī)則的方法D.基于人工判斷的方法14、人工智能在教育領(lǐng)域有潛在的應(yīng)用價值。假設(shè)要開發(fā)一個個性化學(xué)習(xí)系統(tǒng),能夠根據(jù)學(xué)生的學(xué)習(xí)情況提供定制的學(xué)習(xí)計劃。以下關(guān)于收集學(xué)生學(xué)習(xí)數(shù)據(jù)的方法,哪一項是需要謹慎處理的?()A.跟蹤學(xué)生在在線學(xué)習(xí)平臺上的學(xué)習(xí)時間、答題情況等B.收集學(xué)生的個人興趣愛好和家庭背景等信息C.分析學(xué)生的作業(yè)和考試成績,了解其知識掌握程度D.通過問卷調(diào)查了解學(xué)生的學(xué)習(xí)風(fēng)格和偏好15、在人工智能的語音合成任務(wù)中,要生成自然流暢且富有情感的語音。假設(shè)需要模擬不同人的聲音特點和情感表達,以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語音合成模型,學(xué)習(xí)語音特征B.使用固定的語音模板,進行簡單組合C.隨機生成語音的音調(diào)和語速D.不考慮情感因素,只生成清晰的語音二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在氣象預(yù)報中的進展。2、(本題5分)解釋人工智能在設(shè)備維護和預(yù)測性維修中的技術(shù)。3、(本題5分)簡述人工智能在企業(yè)社會責(zé)任和可持續(xù)發(fā)展報告中的作用。4、(本題5分)簡述人工智能在社會發(fā)展未來展望和挑戰(zhàn)應(yīng)對中的策略。三、操作題(本大題共5個小題,共25分)1、(本題5分)使用Python的PyTorch框架,構(gòu)建一個門控循環(huán)單元(GRU)模型,用于對自然語言處理任務(wù)(如文本分類)進行建模,評估模型性能。2、(本題5分)利用Python的Keras庫,構(gòu)建一個基于生成對抗網(wǎng)絡(luò)(GAN)的圖像超分辨率模型。將低分辨率圖像轉(zhuǎn)換為高分辨率圖像,評估重建圖像的清晰度和細節(jié)恢復(fù)情況。3、(本題5分)使用Python中的TensorFlow庫,構(gòu)建一個基于卷積神經(jīng)網(wǎng)絡(luò)(CNN)的圖像分類模型,用于對不同種類的水果圖像進行分類。要求對數(shù)據(jù)集進行預(yù)處理,包括圖像增強、數(shù)據(jù)歸一化等操作,然后訓(xùn)練模型并在測試集上評估其準(zhǔn)確率。4、(本題5分)使用OpenCV和深度學(xué)習(xí)模型,實現(xiàn)對交通標(biāo)志的識別。在道路圖像中準(zhǔn)確識別各種交通標(biāo)志,保障交通安全。5、(本題5分)借助Scikit-learn中的線性回歸算法,對房地產(chǎn)市場的數(shù)據(jù)進行分析,預(yù)測房價??紤]房屋的面積、位置、房齡等因素,評估模型的擬合優(yōu)度和預(yù)測誤差。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)分析一個利用人工智能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論