2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁
2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁
2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁
2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁
2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆四川省德陽中學(xué)高考?jí)狠S卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.2.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.3.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.4.已知向量,,當(dāng)時(shí),()A. B. C. D.5.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.406.“完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28不在同一組的概率為()A. B. C. D.7.設(shè)函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當(dāng)時(shí),.若存在,且為函數(shù)的一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.8.在一個(gè)數(shù)列中,如果,都有(為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,叫做這個(gè)數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.9.在的展開式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.10.關(guān)于函數(shù),有下列三個(gè)結(jié)論:①是的一個(gè)周期;②在上單調(diào)遞增;③的值域?yàn)?則上述結(jié)論中,正確的個(gè)數(shù)為()A. B. C. D.11.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.12.設(shè)P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q二、填空題:本題共4小題,每小題5分,共20分。13.若關(guān)于的不等式在時(shí)恒成立,則實(shí)數(shù)的取值范圍是_____14.在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為________.15.如圖,在復(fù)平面內(nèi),復(fù)數(shù),對應(yīng)的向量分別是,,則_______.16.設(shè)(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.18.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.19.(12分)設(shè)函數(shù),其中是自然對數(shù)的底數(shù).(Ⅰ)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線段的中點(diǎn)為,證明:.20.(12分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.21.(12分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.22.(10分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時(shí),若,,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.2、D【解析】

根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.3、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。4、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.5、B【解析】

,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.6、C【解析】

先求出五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè)的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個(gè)數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28不在同一組的概率.故選:C.【點(diǎn)睛】本題考查古典概型的概率的求法,涉及實(shí)際問題中組合數(shù)的應(yīng)用.7、D【解析】

先構(gòu)造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導(dǎo),判斷其單調(diào)性,進(jìn)而可求出結(jié)果.【詳解】構(gòu)造函數(shù),因?yàn)?,所以,所以為奇函?shù),當(dāng)時(shí),,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因?yàn)榇嬖?,所以,所以,化簡得,所以,即令,因?yàn)闉楹瘮?shù)的一個(gè)零點(diǎn),所以在時(shí)有一個(gè)零點(diǎn)因?yàn)楫?dāng)時(shí),,所以函數(shù)在時(shí)單調(diào)遞減,由選項(xiàng)知,,又因?yàn)?,所以要使在時(shí)有一個(gè)零點(diǎn),只需使,解得,所以a的取值范圍為,故選D.【點(diǎn)睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.8、B【解析】

計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.9、D【解析】

根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,10、B【解析】

利用三角函數(shù)的性質(zhì),逐個(gè)判斷即可求出.【詳解】①因?yàn)?,所以是的一個(gè)周期,①正確;②因?yàn)椋?,所以在上不單調(diào)遞增,②錯(cuò)誤;③因?yàn)?,所以是偶函?shù),又是的一個(gè)周期,所以可以只考慮時(shí),的值域.當(dāng)時(shí),,在上單調(diào)遞增,所以,的值域?yàn)椋坼e(cuò)誤;綜上,正確的個(gè)數(shù)只有一個(gè),故選B.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.11、B【解析】

利用乘法運(yùn)算化簡復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.12、C【解析】

解:因?yàn)镻={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號(hào),再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進(jìn)而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實(shí)數(shù)的取值范圍是?!军c(diǎn)睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。14、【解析】

解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,可轉(zhuǎn)化為利用切線與直線平行來找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問題和解決問題的能力,屬于中等題.15、【解析】試題分析:由坐標(biāo)系可知考點(diǎn):復(fù)數(shù)運(yùn)算16、【解析】

求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可.【詳解】當(dāng)時(shí),,由得:,解得,由得:,解得,即當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是最大值,(e),當(dāng),,當(dāng),,作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個(gè)根,當(dāng)或時(shí),方程有2個(gè)根,當(dāng)時(shí),方程有3個(gè)根,則,等價(jià)為,當(dāng)時(shí),,若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,則,即(1)解得:,故答案為:【點(diǎn)睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解析】

(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點(diǎn)睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ).【解析】

(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當(dāng)時(shí),化簡得.解得;當(dāng)時(shí),化簡得.此時(shí)無解;當(dāng)時(shí),化簡得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時(shí),方程等價(jià)于方程.易知當(dāng),方程在上有兩個(gè)不相等的實(shí)數(shù)根.此時(shí)方程在上無解.滿足條件.當(dāng)時(shí),方程等價(jià)于方程,此時(shí)方程在上顯然沒有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),易知當(dāng),方程在上有且只有一個(gè)實(shí)數(shù)根.此時(shí)方程在上也有一個(gè)實(shí)數(shù)根.滿足條件.綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查解絕對值不等式以及方程根的個(gè)數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.19、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)依題意在上存在兩個(gè)極值點(diǎn),等價(jià)于在有兩個(gè)不等實(shí)根,由參變分類可得,令,利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而得到參數(shù)的取值范圍;(Ⅱ)由題解得,,要證成立,只需證:,即:,只需證:,設(shè),即證:,再分別證明,即可;【詳解】解:(Ⅰ)由題意可知,,在上存在兩個(gè)極值點(diǎn),等價(jià)于在有兩個(gè)不等實(shí)根,由可得,,令,則,令,可得,當(dāng)時(shí),,所以在上單調(diào)遞減,且當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減;所以是的極大值也是最大值,又當(dāng),當(dāng)大于0趨向與0,要使在有兩個(gè)根,則,所以的取值范圍為;(Ⅱ)由題解得,,要證成立,只需證:即:,只需證:設(shè),即證:要證,只需證:令,則在上為增函數(shù),即成立;要證,只需證明:令,則在上為減函數(shù),,即成立成立,所以成立.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,利用導(dǎo)數(shù)證明不等式,屬于難題;20、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)由余弦定理解得,即可得到,由面面垂直的性質(zhì)可得平面,即可得到,從而得證;(Ⅱ)在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,利用空間向量法得到二面角的余弦,即可得到的關(guān)系,從而得解;【詳解】解:(Ⅰ)證明:在中,,解得,則,從而因?yàn)槠矫嫫矫?,平面平面所以平面,又因?yàn)槠矫?,所以,因?yàn)?,,平面,平面,所以平面;(Ⅱ)解:在平面中,過點(diǎn)作于點(diǎn),則平面,如圖所示建立空間直角坐標(biāo)系,設(shè),其中,則設(shè)平面的法向量為,則,即,令,則又平面的一個(gè)法向量,則從而,故則直線與平面所成的角為,大小為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì)定理的應(yīng)用,利用空間向量法解決立體幾何問題,屬于中檔題.21、(1)極大值,極小值;(2)詳見解析.【解析】

首先確定函數(shù)的定義域和;(1)當(dāng)時(shí),根據(jù)的正負(fù)可確定單調(diào)性,進(jìn)而確定極值點(diǎn),代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進(jìn)而得到結(jié)論.【詳解】由題意得:定義域?yàn)椋?)當(dāng)時(shí),,當(dāng)和時(shí),;當(dāng)時(shí),,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€(gè)變量的問題轉(zhuǎn)化為一個(gè)變量的問題,通過構(gòu)造函數(shù)的方式將問題轉(zhuǎn)化為函數(shù)最值的求解問題.22、(1)證明見解析;(2)證明見解析.【解析】

(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論