




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東棗莊市2025屆高三第三次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.2.已知函數(shù)的圖象向左平移個單位后得到函數(shù)的圖象,則的最小值為()A. B. C. D.3.已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個不同的零點,則實數(shù)的取值范圍為()A. B. C. D.4.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位5.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.6.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.7.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.若,則()A. B. C. D.9.函數(shù)的部分圖象大致是()A. B.C. D.10.設,其中a,b是實數(shù),則()A.1 B.2 C. D.11.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構成樂音的是()A. B. C. D.12.函數(shù)與的圖象上存在關于直線對稱的點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若展開式的二項式系數(shù)之和為64,則展開式各項系數(shù)和為__________.14.若實數(shù),滿足不等式組,則的最小值為______.15.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標函數(shù)的最小值為-1,則實數(shù)等于______.16.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對邊分別為,且,求的面積.18.(12分)求下列函數(shù)的導數(shù):(1)(2)19.(12分)心形線是由一個圓上的一個定點,當該圓在繞著與其相切且半徑相同的另外一個圓周上滾動時,這個定點的軌跡,因其形狀像心形而得名,在極坐標系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點為坐標原點的直角坐標系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標方程;(2)若曲線與相交于、、三點,求線段的長.20.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設點是線段上的動點,當直線與直線所成的角最小時,求三棱錐的體積.21.(12分)2019年6月,國內(nèi)的運營牌照開始發(fā)放.從到,我們國家的移動通信業(yè)務用了不到20年的時間,完成了技術上的飛躍,躋身世界先進水平.為了解高校學生對的消費意愿,2019年8月,從某地在校大學生中隨機抽取了1000人進行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預計升級到的時段人數(shù)早期體驗用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學生升級時間的早晚與大學生愿意為套餐支付更多的費用作比較,可得出下圖的關系(例如早期體驗用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗用戶的).(1)從該地高校大學生中隨機抽取1人,估計該學生愿意在2021年或2021年之前升級到的概率;(2)從樣本的早期體驗用戶和中期跟隨用戶中各隨機抽取1人,以表示這2人中愿意為升級多支付10元或10元以上的人數(shù),求的分布列和數(shù)學期望;(3)2019年底,從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐,能否認為樣本中早期體驗用戶的人數(shù)有變化?說明理由.22.(10分)設函數(shù).(1)當時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設,,聯(lián)立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構造函數(shù)關系的方式,然后結(jié)合導數(shù)或者利用函數(shù)值域的方法來求解最值.2、A【解析】
首先求得平移后的函數(shù),再根據(jù)求的最小值.【詳解】根據(jù)題意,的圖象向左平移個單位后,所得圖象對應的函數(shù),所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數(shù)的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.3、D【解析】
將原題等價轉(zhuǎn)化為方程在內(nèi)都有兩個不同的根,先求導,可判斷時,,是增函數(shù);當時,,是減函數(shù).因此,再令,求導得,結(jié)合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數(shù)可判斷當時,在上是增函數(shù);當時,在上是減函數(shù);則應滿足,再結(jié)合,構造函數(shù),求導即可求解;【詳解】函數(shù)在內(nèi)都有兩個不同的零點,等價于方程在內(nèi)都有兩個不同的根.,所以當時,,是增函數(shù);當時,,是減函數(shù).因此.設,,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數(shù);當時,在上是減函數(shù).因為,方程在內(nèi)有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求解參數(shù)取值范圍問題,構造函數(shù)法,導數(shù)法研究函數(shù)增減性與最值關系,轉(zhuǎn)化與化歸能力,屬于難題4、D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應用問題,屬于基礎題.5、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.6、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數(shù)定義,和差公式,意在考查學生的計算能力.7、B【解析】
由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導公式的應用,屬于中檔題.8、D【解析】
直接利用二倍角余弦公式與弦化切即可得到結(jié)果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數(shù)關系式的恒等變變換,同角三角函數(shù)關系式的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題型.9、C【解析】
判斷函數(shù)的性質(zhì),和特殊值的正負,以及值域,逐一排除選項.【詳解】,函數(shù)是奇函數(shù),排除,時,,時,,排除,當時,,時,,排除,符合條件,故選C.【點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調(diào)性,極值點等排除選項.10、D【解析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數(shù)模的計算,考驗計算,屬基礎題.11、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.12、C【解析】
由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件.故選:C.【點睛】本題主要考查利用導數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學思想,考查抽象概括、運算求解等數(shù)學能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意得展開式的二項式系數(shù)之和求出的值,然后再計算展開式各項系數(shù)的和.【詳解】由題意展開式的二項式系數(shù)之和為,即,故,令,則展開式各項系數(shù)的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數(shù)和項的系數(shù)和問題,需要運用定義加以區(qū)分,并能夠運用公式和賦值法求解結(jié)果,需要掌握解題方法.14、5【解析】
根據(jù)題意,畫出圖像,數(shù)形結(jié)合,將目標轉(zhuǎn)化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區(qū)域如圖陰影區(qū)域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規(guī)劃問題,屬于基礎題15、【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,結(jié)合目標函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法,屬于基礎題.16、【解析】
由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數(shù)形結(jié)合能力和計算能力,難度較難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】
(1)利用平面向量數(shù)量積的坐標運算可得,利用正弦函數(shù)的周期性即可求解;(2)由(1)可求,結(jié)合范圍,可求的值,由余弦定理可求的值,進而根據(jù)三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數(shù)量積的坐標運算、正弦函數(shù)的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉(zhuǎn)化思想和分類討論思想,屬于基礎題.18、(1);(2).【解析】
(1)根據(jù)復合函數(shù)的求導法則可得結(jié)果.(2)同樣根據(jù)復合函數(shù)的求導法則可得結(jié)果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數(shù)的導數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復合,再根據(jù)復合函數(shù)的求導法則可得所求的導數(shù),本題屬于容易題.19、(1)();(2).【解析】
(1)化簡得到直線方程為,再利用極坐標公式計算得到答案.(2)聯(lián)立方程計算得到,,計算得到答案.【詳解】(1)由消得,即,是過原點且傾斜角為的直線,∴的極坐標方程為().(2)由得,∴,由得∴,∴.【點睛】本題考查了參數(shù)方程,極坐標方程,意在考查學生的計算能力和應用能力.20、(1)見解析;(2).【解析】
(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標系,利用向量法求,并求其最大值從而確定出使問題得到解決.【詳解】(1)連結(jié)AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標系,則,,,,所以,,,設,,則,所以,設,則,所以當,即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內(nèi)容較多,計算量較大,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.21、(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認為早期體驗用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學生中隨機抽取1人,該學生在2021年或2021年之前升級到,結(jié)合古典摡型的概率計算公式,即可求解;(2)由題意的所有可能值為,利用相互獨立事件的概率計算公式,分別求得相應的概率,得到隨機變量的分布列,利用期望的公式,即可求解.(3)設事件為“從這1000人的樣本中隨機抽取3人,這三位學生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學生中隨機抽取1人,該學生在2021年或2021年
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省安丘市、高密市、壽光市2024-2025學年初三化學試題開學統(tǒng)練試題含解析
- 慶陽縣2024-2025學年四年級數(shù)學第二學期期末聯(lián)考試題含解析
- 保廉合同(廉潔協(xié)議)
- 湖南省炎德英才名校聯(lián)考聯(lián)合體2025屆高三11月第四次聯(lián)考-物理答案
- 遼寧省丹東市2019-2020學年八年級上學期期末物理試題【含答案】
- SEO優(yōu)化服務合同范本:行業(yè)標準
- 年終述職報告工作總結(jié)120
- 八年級地理上冊 4.1 交通運輸教學設計1 (新版)新人教版
- 機械制造工藝緒論
- 企業(yè)合并合同范本
- 2021兒童體格發(fā)育評估與管理臨床實踐專家共識
- 一般生產(chǎn)經(jīng)營單位主要負責人練習題參考模板范本
- 售后服務計劃-措施及服務承諾
- TSTIC 110075-2022 三維心臟電生理標測系統(tǒng)
- GB/T 35347-2017機動車安全技術檢測站
- 人工智能發(fā)展史課件
- 醫(yī)院定量檢驗性能驗證實驗方案設計
- 《組織行為學》題庫(含答案)
- 重醫(yī)大小兒外科學教案11先天性腸閉鎖、腸狹窄及腸旋轉(zhuǎn)不良
- DB22∕T 2797.1-2017 玄武巖纖維復合筋及玄武巖纖維混凝土設計與施工規(guī)范 第1部分:玄武巖纖維復合筋
- 資產(chǎn)評估案例分析-——以貴州茅臺酒股份有限公司為例
評論
0/150
提交評論