第10章 第4講 事件的獨立性、條件概率與全概率公式_第1頁
第10章 第4講 事件的獨立性、條件概率與全概率公式_第2頁
第10章 第4講 事件的獨立性、條件概率與全概率公式_第3頁
第10章 第4講 事件的獨立性、條件概率與全概率公式_第4頁
第10章 第4講 事件的獨立性、條件概率與全概率公式_第5頁
已閱讀5頁,還剩59頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第十章計數(shù)原理、概率、隨機變量及其分布第四講事件的獨立性、條件概率與全概率公式知識梳理·雙基自測名師講壇·素養(yǎng)提升考點突破·互動探究提能訓(xùn)練練案[66]知識梳理·雙基自測P(A)P(B)注:“相互獨立”與“事件互斥”的區(qū)別.兩事件互斥是指兩個事件不可能同時發(fā)生,兩事件相互獨立是指一個事件發(fā)生與否對另一事件發(fā)生的概率沒有影響.兩事件相互獨立不一定互斥.4.性質(zhì):(1)0≤P(B|A)≤1;(2)若B與C互斥,則P(B∪C|A)=P(B|A)+P(C|A).雙

測題組一走出誤區(qū)1.判斷下列結(jié)論是否正確(請在括號中打“√”或“×”)(1)若事件A,B相互獨立,則P(B|A)=P(B).(

)(2)P(B|A)表示在事件A發(fā)生的條件下,事件B發(fā)生的概率;P(BA)表示事件A,B同時發(fā)生的概率,一定有P(AB)=P(A)·P(B).(

)√

×(3)袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是0.5.(

)(4)拋擲兩枚質(zhì)地均勻的骰子,記事件A=“第一枚骰子奇數(shù)面朝上”,事件B=“兩枚骰子向上點數(shù)之和為7”.則A與B獨立.(

)√

BCDC題組三走向高考4.(2021·新高考Ⅰ卷)有6個相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6,從中有放回的隨機取兩次,每次取1個球,甲表示事件“第一次取出的球的數(shù)字是1”,乙表示事件“第二次取出的球的數(shù)字是2”,丙表示事件“兩次取出的球的數(shù)字之和是8”,丁表示事件“兩次取出的球的數(shù)字之和是7”,則(

)A.甲與丙相互獨立

B.甲與丁相互獨立C.乙與丙相互獨立

D.丙與丁相互獨立B5.(2023·高考全國甲卷)有50人報名足球俱樂部,60人報名乒乓球俱樂部,70人報名足球或乒乓球俱樂部,若已知某人報足球俱樂部,則其報乒乓球俱樂部的概率為(

)A.0.8 B.0.4C.0.2 D.0.1A考點突破·互動探究條件概率——自主練透B2.(2024·天津河北區(qū)期中)甲、乙兩人射擊,每人射擊一次.已知甲命中的概率是0.8,乙命中的概率是0.7,兩人每次射擊是否命中互不影響.設(shè)事件A為“兩人至少命中一次”,事件B為“甲命中”,則條件概率P(B|A)的值為_______.CB相互獨立事件——多維探究角度1判斷事件的獨立性(2023·河北“五個一”名校聯(lián)盟聯(lián)考)先后拋擲兩枚質(zhì)地均勻的骰子,甲表示事件“第一枚骰子擲出的點數(shù)是1”,乙表示事件“第二枚骰子擲出的點數(shù)是2”,丙表示事件“兩枚骰子擲出的點數(shù)之和是8”,丁表示事件“兩枚骰子擲出的點數(shù)之和是7”,則下列說法正確的有(

)①甲與乙相互獨立

②乙與丁相互獨立③乙與丙不互斥但相互獨立

④甲與丙互斥但不相互獨立A.1個

B.2個

C.3個

D.4個CACD2.甲、乙兩隊進行籃球決賽,采取七場四勝制(當(dāng)一隊贏得四場勝利時,該隊獲勝,決賽結(jié)束).根據(jù)前期比賽成績,甲隊的主客場安排依次為“主主客客主客主”,設(shè)甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨立,則甲隊以4∶1獲勝的概率是____________.0.18[解析]

前四場中有一場客場輸,第五場贏時,甲隊以4∶1獲勝的概率是0.63×0.5×0.5×2=0.108,前四場中有一場主場輸,第五場贏時,甲隊以4∶1獲勝的概率是0.4×0.62×0.52×2=0.072,綜上所述,甲隊以4∶1獲勝的概率是P=0.108+0.072=0.18.3.(2024·山西大同摸底)已知某音響設(shè)備由五個部件組成,A電視機,B影碟機,C線路,D左聲道和E右聲道,其中每個部件能否正常工作相互獨立,各部件正常工作的概率如圖所示.能聽到聲音,當(dāng)且僅當(dāng)A與B至少有一個正常工作,C正常工作,D與E中至少有一個正常工作.則聽不到聲音的概率為(

)A.0.19738 B.0.00018C.0.01092 D.0.09828A[引申]本例2中乙以4∶0獲勝的概率為______,甲以4∶2獲勝的概率為______.0.040.171求相互獨立事件概率的主要方法1.利用相互獨立事件的概率乘法公式直接求解.2.正面計算較繁瑣(如求用“至少”“至多”等表述的事件的概率)或難以入手時,可從其對立事件入手計算.【變式訓(xùn)練】1.(角度1)(2023·湖南名校仿真模擬)隨著2022年卡塔爾世界杯的舉辦,中國足球也需要重視足球教育.某市為提升學(xué)生的足球水平,特地在當(dāng)?shù)剡x拔出幾所學(xué)校作為足球特色學(xué)校,開設(shè)了“5人制”“7人制”“9人制”“11人制”四類足球體驗課程.甲、乙兩名同學(xué)各自從中任意挑選兩門課程學(xué)習(xí),設(shè)事件A=“甲、乙兩人所選課程恰有一門相同”,事件B=“甲、乙兩人所選課程完全不同”,事件C=“甲、乙兩人均未選擇‘5人制’課程”,則(

)A.A與B為對立事件

B.A與C互斥C.A與C相互獨立

D.B與C相互獨立CC全概率公式——師生共研全概率公式——師生共研(2024·江蘇常州聯(lián)盟校調(diào)研)甲箱中有兩個白球三個紅球,乙箱中有一個白球三個紅球,先從甲箱中取一球放入乙箱,再從乙箱中任取一球,則從乙箱中取得的為白球的概率為_______.【變式訓(xùn)練】(2024·廣東深圳外國語學(xué)校月考)鑰匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分別是50%、30%和20%,而掉在上述三處被找到的概率分別是0.8、0.3和0.1,則找到鑰匙的概率為_______.[解析]

記事件A1為“鑰匙掉在宿舍里”,A2為“鑰匙掉在教室里”,A3為“鑰匙掉在路上”,事件B為“找到鑰匙”,由全概率公式得P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.5×0.8+0.3×0.3+0.2×0.1=0.51.0.51名師講壇·素養(yǎng)提升1.(2024·江蘇常州教育學(xué)會期中檢測)居民的某疾病發(fā)病率為1%,現(xiàn)進行普查化驗,醫(yī)學(xué)研究表明,化驗結(jié)果是可能存有誤差的.已知患有該疾病的人其化驗結(jié)果99%呈陽性,而沒有患該疾病的人其化驗結(jié)果1%呈陽性.現(xiàn)有某人的化驗結(jié)果呈陽性,則他真的患該疾病的概率是(

)A.0.99 B.0.9C.0.5 D.0.1C2.(2024·江蘇鎮(zhèn)江一中月考)第19屆杭州亞運會一電子競技作為正式體育競賽項目備受關(guān)注.已知某項賽事的季后賽后半段有四支戰(zhàn)隊參加,采取“雙敗淘汰賽制”,對陣表如圖,賽程如下:第一輪:四支隊伍分別兩兩對陣(即比賽1和2),兩支獲勝隊伍進入勝者組,兩支失敗隊伍落入敗者組.第二輪:勝者組兩支隊伍對陣(即比賽3),獲勝隊伍成為勝者組第一名,失敗隊伍落入敗者組;第一輪落入敗者組兩支隊伍對陣(即比賽4),失敗隊伍(已兩敗)被淘汰(獲得殿軍),獲勝隊伍留在敗者組.第三輪:敗者組兩支隊伍對陣(即比賽5),失敗隊伍被淘汰(獲得季軍);獲勝隊伍成為敗者組第一名.第四輪:敗者組第一名和勝者組第一名決賽(即比賽6),爭奪冠軍.假設(shè)每場比賽雙方獲勝的概率均為0.5,每場比賽之間相互獨立.問:(1)若第一輪隊伍A和隊伍D對陣,則他們?nèi)阅茉跊Q賽中對陣的概率是多少?(2)已知隊伍B在上述季后賽后半段所參加的所有比賽中,敗了兩場,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論