版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省牡丹江市2025屆高三第三次測評數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則下列關(guān)系正確的是()A. B. C. D.2.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或03.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.4.在中,,,,為的外心,若,,,則()A. B. C. D.5.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.7.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形9.設(shè)是虛數(shù)單位,若復(fù)數(shù),則()A. B. C. D.10.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.12.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足,則的最大值為______.14.一次考試后,某班全班50個人數(shù)學(xué)成績的平均分為正數(shù),若把當成一個同學(xué)的分數(shù),與原來的50個分數(shù)一起,算出這51個分數(shù)的平均值為,則_________.15.如圖,在矩形中,,是的中點,將,分別沿折起,使得平面平面,平面平面,則所得幾何體的外接球的體積為__________.16.已知函數(shù)圖象上一點處的切線方程為,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.18.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.82819.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側(cè)).20.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.21.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點.(1)求證:平面;(2)若,求二面角的余弦值大小.22.(10分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.2、C【解析】
求出函數(shù)的導(dǎo)函數(shù),當時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.3、D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.4、B【解析】
首先根據(jù)題中條件和三角形中幾何關(guān)系求出,,即可求出的值.【詳解】如圖所示過做三角形三邊的垂線,垂足分別為,,,過分別做,的平行線,,由題知,則外接圓半徑,因為,所以,又因為,所以,,由題可知,所以,,所以.故選:D.【點睛】本題主要考查了三角形外心的性質(zhì),正弦定理,平面向量分解定理,屬于一般題.5、A【解析】
根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.6、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).7、D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.8、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.9、A【解析】
結(jié)合復(fù)數(shù)的除法運算和模長公式求解即可【詳解】∵復(fù)數(shù),∴,,則,故選:A.【點睛】本題考查復(fù)數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題10、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎(chǔ)題.11、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.12、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出不等式組表示的平面區(qū)域,將目標函數(shù)理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合即可求得.【詳解】不等式組表示的平面區(qū)域如下所示:因為可以理解為點與構(gòu)成直線的斜率,數(shù)形結(jié)合可知,當且僅當目標函數(shù)過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數(shù)為斜率型的規(guī)劃問題,屬基礎(chǔ)題.14、1【解析】
根據(jù)均值的定義計算.【詳解】由題意,∴.故答案為:1.【點睛】本題考查均值的概念,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意,畫出空間幾何體,設(shè)的中點分別為,并連接,利用面面垂直的性質(zhì)及所給線段關(guān)系,可知幾何體的外接球的球心為,即可求得其外接球的體積.【詳解】由題可得,,均為等腰直角三角形,如圖所示,設(shè)的中點分別為,連接,則,.因為平面平面,平面平面,所以平面,平面,易得,則幾何體的外接球的球心為,半徑,所以幾何體的外接球的體積為.故答案為:.【點睛】本題考查了空間幾何體的綜合應(yīng)用,折疊后空間幾何體的線面位置關(guān)系應(yīng)用,空間幾何體外接球的性質(zhì)及體積求法,屬于中檔題.16、1【解析】
求出導(dǎo)函數(shù),由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,的取值范圍為;當時,的取值范圍為.【解析】
(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應(yīng)用,其中解答中熟記含絕對值不等式的解法,以及合理應(yīng)用絕對值的三角不等式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān).【解析】
(1)排序后第10和第11兩個數(shù)的平均數(shù)為中位數(shù);(2)由莖葉圖可得列聯(lián)表;(3)由列聯(lián)表計算可得結(jié)論.【詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān).【點睛】本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關(guān)鍵.19、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實數(shù)解,對求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數(shù)解;當時,;當時,;即對于任意實數(shù),一定有解;;當時,有兩個極值點;函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.20、(1)見解析;(2)見解析【解析】
(1)根據(jù),分別是,的中點,即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點,證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質(zhì)等,解題時要認真審題,注意空間思維能力的培養(yǎng),中檔題.21、(1)見解析;(2)【解析】
(1)設(shè)中點為,連接、,首先通過條件得出,加,可得,進而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點為,連接、,可得平面,加上平面,則可如圖建立直角坐標系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點,,建立直角坐標系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計算能力和空間想象能力,是中檔題.22、(1);(2)不存在實數(shù),使曲線在點處的切線與軸垂直.【解析】
(1)分類時,恒成立,時,分離參數(shù)為,引入新函數(shù),利用導(dǎo)數(shù)求得函數(shù)最值即可;(2),導(dǎo)出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育館環(huán)境衛(wèi)生承諾書
- 2024年研發(fā)設(shè)計與技術(shù)咨詢協(xié)議3篇
- 證券公司投資資產(chǎn)管理
- SP館租賃合同模板
- 鐵路軌道施工安全合同
- 設(shè)計工作室隔斷租賃協(xié)議
- 跨境支付項目澄清函參考模板
- 環(huán)保行業(yè)污染防治培訓(xùn)費管理辦法
- 能源利用評審員管理辦法
- 機場化糞池改造工程合同
- 脊柱區(qū)1教學(xué)講解課件
- KK5-冷切鋸操作手冊-20151124
- 教你炒紅爐火版00纏論大概
- 消防管道施工合同
- 大學(xué)生計算與信息化素養(yǎng)-北京林業(yè)大學(xué)中國大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 2023年國開大學(xué)期末考復(fù)習(xí)題-3987《Web開發(fā)基礎(chǔ)》
- 《駱駝祥子》1-24章每章練習(xí)題及答案
- 國際金融課后習(xí)題答案(吳志明第五版)第1-9章
- 《基于杜邦分析法周大福珠寶企業(yè)盈利能力分析報告(6400字)》
- 全國英語等級考試三級全真模擬試題二-2023修改整理
- 02R112 拱頂油罐圖集
評論
0/150
提交評論