版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆黑龍江省哈爾濱師大附中高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱柱的所有棱長(zhǎng)均相等,側(cè)棱平面,過(guò)作平面與平行,設(shè)平面與平面的交線(xiàn)為,記直線(xiàn)與直線(xiàn)所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.3.已知直線(xiàn)與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.4.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線(xiàn)段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則()A.在點(diǎn)F的運(yùn)動(dòng)過(guò)程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值5.連接雙曲線(xiàn)及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線(xiàn)的離心率為()A. B. C. D.6.將函數(shù)的圖象分別向右平移個(gè)單位長(zhǎng)度與向左平移(>0)個(gè)單位長(zhǎng)度,若所得到的兩個(gè)圖象重合,則的最小值為()A. B. C. D.7.把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,再將圖象向右平移個(gè)單位,那么所得圖象的一個(gè)對(duì)稱(chēng)中心為()A. B. C. D.8.復(fù)數(shù)的模為().A. B.1 C.2 D.9.已知雙曲線(xiàn)的一條漸近線(xiàn)與直線(xiàn)垂直,則雙曲線(xiàn)的離心率等于()A. B. C. D.10.2019年某校迎國(guó)慶70周年歌詠比賽中,甲乙兩個(gè)合唱隊(duì)每場(chǎng)比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個(gè)位數(shù)字為葉).若甲隊(duì)得分的中位數(shù)是86,乙隊(duì)得分的平均數(shù)是88,則()A.170 B.10 C.172 D.1211.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.12.過(guò)橢圓的左焦點(diǎn)的直線(xiàn)過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)與函數(shù),在公共點(diǎn)處有共同的切線(xiàn),則實(shí)數(shù)的值為_(kāi)_____.14.已知點(diǎn)是拋物線(xiàn)的準(zhǔn)線(xiàn)上一點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),P為拋物線(xiàn)上的點(diǎn),且,若雙曲線(xiàn)C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過(guò)P點(diǎn),當(dāng)m取最小值時(shí),雙曲線(xiàn)C的離心率為_(kāi)_____.15.已知全集,集合,則______.16.若滿(mǎn)足,則目標(biāo)函數(shù)的最大值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.19.(12分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線(xiàn)段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.20.(12分)本小題滿(mǎn)分14分)已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)被曲線(xiàn)截得的線(xiàn)段的長(zhǎng)度21.(12分)在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長(zhǎng).22.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大?。唬?)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
利用圖形作出空間中兩直線(xiàn)所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過(guò)且與平行的平面為平面,所以直線(xiàn)即為直線(xiàn),由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長(zhǎng)為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線(xiàn)所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀(guān)想象的核心素養(yǎng).2、C【解析】
利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.【詳解】解:復(fù)數(shù)i(2+i)=2i﹣1對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(﹣1,2),故選:C【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.3、C【解析】
根據(jù)表示圓和直線(xiàn)與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€(xiàn)與圓有公共點(diǎn),所以圓心到直線(xiàn)的距離,即,解得,此時(shí),因?yàn)?,在遞增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線(xiàn)與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.4、C【解析】
采用逐一驗(yàn)證法,根據(jù)線(xiàn)線(xiàn)、線(xiàn)面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線(xiàn)面、線(xiàn)線(xiàn)之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線(xiàn)面垂直與平行的判定定理以及性質(zhì)定理,中檔題.5、D【解析】
先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線(xiàn)與互為共軛雙曲線(xiàn),四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線(xiàn)形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線(xiàn)的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線(xiàn)的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線(xiàn)的離心率,屬于簡(jiǎn)單題目.6、B【解析】
首先根據(jù)函數(shù)的圖象分別向左與向右平移m,n個(gè)單位長(zhǎng)度后,所得的兩個(gè)圖像重合,那么,利用的最小正周期為,從而求得結(jié)果.【詳解】的最小正周期為,那么(∈),于是,于是當(dāng)時(shí),最小值為,故選B.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)的周期與函數(shù)圖象平移之間的關(guān)系,屬于簡(jiǎn)單題目.7、D【解析】
試題分析:把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個(gè)單位,可得的圖象,那么所得圖象的一個(gè)對(duì)稱(chēng)中心為,故選D.考點(diǎn):三角函數(shù)的圖象與性質(zhì).8、D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:,復(fù)數(shù)的模為.故選:D.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.9、B【解析】由于直線(xiàn)的斜率k,所以一條漸近線(xiàn)的斜率為,即,所以,選B.10、D【解析】
中位數(shù)指一串?dāng)?shù)據(jù)按從?。ù螅┑酱螅ㄐ。┡帕泻螅幵谧钪虚g的那個(gè)數(shù),平均數(shù)指一串?dāng)?shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點(diǎn)睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識(shí),是一道容易題.11、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無(wú)零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀(guān)想象能力和邏輯推理能力,屬于容易題.12、D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
函數(shù)的定義域?yàn)?,求出?dǎo)函數(shù),利用曲線(xiàn)與曲線(xiàn)公共點(diǎn)為由于在公共點(diǎn)處有共同的切線(xiàn),解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域?yàn)椋?,,設(shè)曲線(xiàn)與曲線(xiàn)公共點(diǎn)為,由于在公共點(diǎn)處有共同的切線(xiàn),∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線(xiàn)方程的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.14、【解析】
由點(diǎn)坐標(biāo)可確定拋物線(xiàn)方程,由此得到坐標(biāo)和準(zhǔn)線(xiàn)方程;過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,根據(jù)拋物線(xiàn)定義可得,可知當(dāng)直線(xiàn)與拋物線(xiàn)相切時(shí),取得最小值;利用拋物線(xiàn)切線(xiàn)的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線(xiàn)定義得到實(shí)軸長(zhǎng),結(jié)合焦距可求得所求的離心率.【詳解】是拋物線(xiàn)準(zhǔn)線(xiàn)上的一點(diǎn)拋物線(xiàn)方程為,準(zhǔn)線(xiàn)方程為過(guò)作準(zhǔn)線(xiàn)的垂線(xiàn),垂足為,則設(shè)直線(xiàn)的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線(xiàn)與拋物線(xiàn)相切設(shè)直線(xiàn)的方程為,代入得:,解得:或雙曲線(xiàn)的實(shí)軸長(zhǎng)為,焦距為雙曲線(xiàn)的離心率故答案為:【點(diǎn)睛】本題考查雙曲線(xiàn)離心率的求解問(wèn)題,涉及到拋物線(xiàn)定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線(xiàn)定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線(xiàn)與拋物線(xiàn)相切,進(jìn)而根據(jù)拋物線(xiàn)切線(xiàn)方程的求解方法求得點(diǎn)坐標(biāo).15、【解析】
根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點(diǎn)睛】本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、-1【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線(xiàn)方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線(xiàn)過(guò)點(diǎn)時(shí),直線(xiàn)在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線(xiàn)性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二移、三求”:(1)作出可行域(一定要注意是實(shí)線(xiàn)還是虛線(xiàn));(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.通過(guò)證明,證得平面,由此證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)取中點(diǎn),中點(diǎn),連接,,.設(shè)交于,則為的中點(diǎn),連接.設(shè),則,,∴.由已知,,∴平面,∴.∵,∴,∵,∴平面,∵平面,∴平面平面.(2)由(1)及已知可得平面,建立如圖所示的空間坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面的法向量為,∴,令得.設(shè)平面的法向量為,∴,令得,∴,∴二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1);(2)證明見(jiàn)詳解,【解析】
(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列所以【點(diǎn)睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗(yàn)觀(guān)察能力以及分析能力,屬中檔題.19、(1)證明見(jiàn)解析(2)【解析】
(1)取中點(diǎn)R,連接,,可知中,且,由Q是中點(diǎn),可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標(biāo)系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點(diǎn)R,連接,,則在中,,且,又Q是中點(diǎn),所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點(diǎn)G,以E為原點(diǎn),,,分別為x,y,x軸,建立如圖所示的空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為,,,所以,,設(shè)平面的一個(gè)法向量為,則即,取,得,又平面的一個(gè)法向量為,所以.因此,二面角的余弦值為【點(diǎn)睛】本題考查線(xiàn)面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運(yùn)算求解能力,難度一般.20、【解析】解:解:將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線(xiàn)方程的普通方程為,………8分圓C的圓心到直線(xiàn)l的距離,……………10分故直線(xiàn)被曲線(xiàn)截得的線(xiàn)段長(zhǎng)度為.……………14分21、(1)(2)【解析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無(wú)機(jī)鹽在光伏材料領(lǐng)域的應(yīng)用研究考核試卷
- 滾動(dòng)軸承自動(dòng)化裝配線(xiàn)考核試卷
- 2024年互聯(lián)網(wǎng)企業(yè)員工工資結(jié)構(gòu)優(yōu)化合同3篇
- 2024年汽車(chē)修理廠(chǎng)合伙經(jīng)營(yíng)產(chǎn)品質(zhì)量協(xié)議2篇
- 等臂杠桿夾具課程設(shè)計(jì)
- 2024年度健康產(chǎn)業(yè)擔(dān)保合同范本擔(dān)保協(xié)議書(shū)3篇
- 拍賣(mài)預(yù)展考核試卷
- 海運(yùn)冷鏈物流技術(shù)創(chuàng)新考核試卷
- 礦山機(jī)械D打印技術(shù)考核試卷
- 樓宇課程設(shè)計(jì)
- 建筑垃圾清運(yùn)重點(diǎn)分析報(bào)告
- 11396-國(guó)家開(kāi)放大學(xué)2023年春期末統(tǒng)一考試《藥事管理與法規(guī)(本)》答案
- NB-T 47013.7-2012(JB-T 4730.7) 4730.7 承壓設(shè)備無(wú)損檢測(cè) 第7部分:目視檢測(cè)
- 網(wǎng)絡(luò)安全與信息保密培訓(xùn)
- 天津市四校2022-2023學(xué)年高二上學(xué)期期末聯(lián)考數(shù)學(xué)試題(原卷版)
- 2023年建筑工程管理經(jīng)理年終總結(jié)及年后展望
- 小學(xué)數(shù)學(xué)問(wèn)題解決能力的培養(yǎng)策略
- 京歌《故鄉(xiāng)是北京》的藝術(shù)特征及演唱分析
- 機(jī)動(dòng)庫(kù)護(hù)士培訓(xùn)課件
- 客情關(guān)系的有效維護(hù)
- 《班主任工作》教學(xué)大綱
評(píng)論
0/150
提交評(píng)論