版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ChasingtheDream:
Industry-Level
Productivity
DevelopmentsinEurope
SerhanCevik,SadhnaNaik,andKeyraPrimus
WP/24/258
NATn
2024
DEC
ARY
?2024InternationalMonetaryFundWP/24/258
IMFWorkingPaper
EuropeanDepartment
ChasingtheDream:Industry-LevelProductivityDevelopmentsinEuropePreparedbySerhanCevik,SadhnaNaikandKeyraPrimus1
AuthorizedfordistributionbyKazukoShironoDecember2024
IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.
Abstract
Europeancountriesarelaggingbehindinproductivitygrowth,withsignificantproductivitygaps
acrossindustries.Inthisstudy,weusecomparableindustry-leveldatatoexplorethepatternsandsourcesoftotalfactorproductivity(TFP)growthacross28countriesinEuropeovertheperiod
1995–2020.Ourempiricalresultshighlightfourmainpoints:(i)TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnologicalinnovationastheleader
countryorbenefitingfromstrongerknowledgespillovers;(ii)thetechnologicalgapisassociated
withTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsandtechnologies;(iii)increasedinvestmentininformationandcommunicationstechnology(ICT)
capitalandresearchanddevelopment(R&D)contributessignificantlytohigherTFPgrowth;and(iv)theimpactofhumancapitaltendstobestrongerwhenacountryisclosertothetechnologicalfrontier.ThecorefindingsofthisstudycallforpolicymeasuresandstructuralreformstopromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiesacrossEurope.
JELClassificationNumbers:
H32;H40;L50;L60;L80;O30;O40;O52
Keywords:
Totalfactorproductivity;technology;R&D;innovation;humancapital;Europe
Author’sE-MailAddress:
scevik@;
snaik@;
kprimus@
1TheauthorswouldliketothankSandraBaquie,HelgeBerger,LukasBoer,BorjaGracia,VincenzoGuzzo,FlorenceJaumotte,andYangYangforvaluablecommentsandsuggestions.
3
Productivityisn'teverything,but,inthelongrun,itisalmosteverything.
—PaulKrugman
I.INTRODUCTION
Followinganextendedperiodofeconomictranquilityandrapidincomeconvergence,Europe
hasexperiencedabarrageoflargeshocksinrecentyearsthatresultedindivergingtrendsin
productivitygrowth,whichiskeytoraisingmateriallivingstandards,expandingtheeconomy’sgrowthpotential,andstrengtheninginternationalcompetitiveness.Understandingthedriversoftotalfactorproductivity(TFP)growth—ameasureoftechnologicaladvancementsandthe
efficiencyinutilizingfactorsofproduction—isthereforenecessarytodeveloppoliciesthatcanhelpstrengthengrowthprospects.WeobservethataggregateTFPgrowthintheEuropean
Union(EU)declinedfromanaverageof0.7percentbetween1996and2007to0.1percentover
theperiod2009–2019and-2percentin2020duringtheCOVID-19pandemic(Figure1).WealsodetectsignificantvariationinaverageTFPgrowthratesacrosstheEUovertheperiod1996–2020,
withaminimumof-2percentinGreecetoamaximumof2percentinSlovakia.These
productivitydevelopmentsattheaggregatelevel,however,canreflectsignificantstructuraldifferencesinhumanandphysicalcapitalaccumulationandtechnologicalprogressatthe
industrylevel.Accordingly,toprovideagranularempiricalassessment,thispaperfocusesonindustry-levelproductivitydevelopmentsthatdeterminetheaggregate.
TheproductivitygapbetweentheEUandtheUShaswidenedaftertheglobalfinancialcrisis
(GFC)in2008,withEUcountrieslaggingbehindinproductivitygrowth(Cette,Fernald,and
Mojon,2016;FernaldandInklaar,2020).Furthermore,therearesignificantproductivitygaps
acrossEUcountriesandindustries,whichhavebecomemoreprominentaftertheGFC.Inthis
study,welookbeyondthebroadcontoursofproductivitygrowthandusecomparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—toexplorethepatternsandsourcesofTFP
growthacross28Europeancountriesovertheperiod1995–2020.Wecontributetotheliteraturebyusingthelatestandmostcomprehensiveindustry-leveldatasetincludingthepandemic
periodanddevelopingagranularanalysisoftradableandnon-tradablesectorsofthe
Figure1.TotalFactorProductivity(TFP)Growth
AverageTFPGrowth
(Percent)
8
6
4
2
0
-2
-4
-6
-8
Inter-QuartileRangeEU:TFPGrowth
1996199820002002200420062008201020122014201620182020
AverageTFPGrowth,1996-20201/
(Percent)
2.5 21.5 10.5 0-0.5 -1-1.5 -2-2.5
EL
PT
LU
HR
ES
IT
CY
SE
IE
FR
BE
NL
UK
DK
HU
EE
SI
AT
DE
CZ
PL
FI
LT
BG
LV
RO
SK
1/Time-spancoveredforeachcountryvariesdependingondataavailability.
Sources:EUKLEMS;authors’calculations.
4
economy.ThisrichsectoraldatasetcoveringalargenumberofeconomiesoveranextendedperiodbeforeandaftertheGFCallowsustoanalyzetheheterogeneityoftradableandnon-tradablesectorswithinandacrosscountries,aswellaswithin-sectorandbetween-sector
developmentsthataresensitivetoaggregationbias(deVriesetal.,2012;üng?r,2017).
Ourempiricalresults,inlinewithpreviousstudies,highlightfourmainpoints.2First,TFPgrowthisdrivenlargelybytheextenttowhichcountriesareinvolvedinscientificandtechnological
innovationastheleadercountryorbenefitingfromstrongerknowledgespillovers.Second,thetechnologicalgap—measuredbyacountry’sTFPdistancetothefrontier—isassociatedwithTFPgrowthascountriesmovetowardsthetechnologicalfrontierbyadoptingnewinnovationsand
technologies,asshowninFigure2.Third,increasedinvestmentininformationand
communicationstechnology(ICT)capitalandresearchanddevelopment(R&D)contributes
significantlytohigherTFPgrowthacrossallEUcountries.Fourth,humancapitalasmeasuredbytheintensityofhigh-skilledlaborattheindustryleveldoesnotappeartohaveastatistically
significantimpactonTFPgrowth,butthereissomeevidencethatthiseffectisstrongerwhenacountryisclosertothetechnologicalfrontierandhumancapitalmattersmoreinnon-tradablesthantradablesectorsoftheeconomy.Foramoregranularassessment,wealsoexplorethe
interactionofindustry-levelfactorswiththetechnologicalgapandfindthatbothICTandnon-ICTcapitalexpenditurestendtomoderatethenegativeeffectofthetechnologicalgaponTFP
growth.Lastly,weestimatethemodelforsubsamplesandshowthatthetechnologicalgapisanimportantdriveroftheTFPslowdowninpost-GFCperiod.
TFPgrowthintheEUstagnatedaftertheGFCandturnednegativewiththeCOVID-19pandemic,withsizableproductivitygapsbetweendifferentindustriesandacrosscountries.Reversingthe
downwardtrendandboostingproductivitygrowtharekeytoraisinglivingstandardsamidadversedemographictransitionsandglobaleconomicrealignments.Asourindustry-level
Tradables
4-
2-
TechnologicalGap
Figure2.TFPGrowthandTechnologicalGap
Non-Tradables
TechnologicalGap
Note:Thesechartsshowabinnedscatterplotof9,151observations.
Sources:EUKLEMS;authors’calculations.
2Theindustry-levelanalysispresentedinthispaperisbroadlyconsistentwithfirm-levelestimationsforEurope,whichalsohighlighttheimportanceofR&Dinvestmenttoboostproductivitygrowth(IMF,2024a).
5
empiricalanalysisindicates,revampingtangibleandintangiblecapitalinvestmentinnew
technologiescangeneratehigherTFPgrowthdirectlyandindirectlybyclosingthetechnologicalgapvis-à-visthefrontier.Wealsofindsomeevidencethathumancapitalmattersmorewhenacountryisclosertothetechnologicalfrontier,especiallyinnon-tradablesectors.Basedonthesefindings,thepriorityshouldbetocreateaconduciveenvironmenttoraisebusinessinvestmentandimprovecapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dand
strengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcaninturnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountries
belowthetechnologyfrontier,withpositivespilloversacrossindustries(Akcigit,Baslandze,andStantcheva,2016;Akcigit,Hanley,andSerrano-Velarde,2021;IMF,2024b).
TheempiricalanalysispresentedinthispapersuggestsanimportantroleforpoliciesinreducingthetechnologicalgapamongcountriesinEurope.Narrowinginnovationandtechnologygaps
vis-à-visthefrontierandexpandingthefrontierarekeytoadvancingproductivitygrowthonasustainablebasis.Thisrequires(i)revampingtangibleandintangiblecapitalinvestmentinnewtechnologiesand(ii)strengtheninghumancapitalforrapidprogressinscienceandtechnology.ThepriorityshouldthereforebegiventocreatingaconduciveenvironmentforhigherbusinessinvestmentandbettercapitalallocationbyprovidingincentivesforcapitalinvestmentandR&Dandstrengtheninghumancapitalaccumulationthrougheducationandhealthcare,whichcanin
turnpromoteinnovationandfacilitatethediffusionofnewandexistingtechnologiestocountriesbelowthetechnologyfrontier,withpositivespilloversacrossindustries.
Theremainderofthisstudyisorganizedasfollows.SectionIIprovidesabriefoverviewofthe
relatedliterature.SectionIIIdescribesthedatausedintheanalysis.SectionIVintroducesthe
salientfeaturesofoureconometricstrategy.SectionVpresentstheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVIsummarizesandprovidesconcludingremarkswithpolicyimplications.
II.LITERATUREREVIEW
Theconceptualframeworkfortheanalysispresentedinthispaperisbasedonthestandard
modelofconditionalconvergence.Thisimpliesthatcountriescancatchuptothetechnological
frontier.However,differencesinsteady-statelevelsofproductivitydependonstructuralfeaturesoftheeconomy,suchaslaborandproductmarketregulations,qualityofinstitutionaland
physicalinfrastructure,sociodemographicfactors,technologyinnovationandadoption,amongothers.Thereisarichliteratureaimingtoexplaincross-countrydifferentialsinproductivityandincomegrowthpatterns(Solow,1956,1957;Swan,1956;Bartelsman,Haltiwanger,andScarpetta,2013;CraftsandO’Rourke,2013;Cette,Fernald,andMojon,2016;égert,2016;Crafts,2018).
Forlaborproductivity,studiesfindthatphysicalandhumancapitalaccumulationarethemaindeterminantsoflaborproductivitygrowthandkeycontributorsofthedivergenceacross
countries(Lucas,1988;Wolff,1991;BenhabibandSpiegel,1994;Maudos,Pastor,andSerrano,2000;Barro,2001;KumarandRussell,2002;HendersonandRussell,2005;F?re,Grosskopf,andMargaritis,2006;EnfloandHjertstrand,2009;HanushekandWoessmann,2015;égert,dela
6
Maisonneuve,andTurner,2023).Thesefindingssuggestthatincreasingproductivityrequires
economicpoliciesdesignedtoreducebarrierstocapitaldeepeningandimprovetheeducationandhealthoftheworkforce.
Anotherimportantfactorincross-countrydifferencesinproductivitygrowthisscientificprogressandtechnologicalchange(NelsonandPhelps,1966;Romer,1987,1990;GrosmanandHelpman,1991;AghionandHowitt,1992;Greenwood,Hercowitz,andKrusell,1997;ArcelusandArozena,1999;Hulten,2001;Krüger,2003;GuellecandvanPottelsberghedelaPotterie,2004;Margaritis,F?re,andGrosskopf,2007;vanArk,O’Mahony,andTimmer,2008;Badunenko,Henderson,and
Zelenyuk,2008;Syverson,2011;Araujo,Vostroknutova,andWacker,2017).Griffith,Redding,andVanReenen(2004),InklaarandTimmer(2007),Jorgenson,Ho,andStiroh(2008)andSchiersch,Belitz,andGornig(2015)developamoregranularapproachtoanalyzeTFPgrowthandobtain
similarevidenceattheindustrylevel.ThesefindingsindicatethateconomicpolicyshouldalsoaimatfosteringR&Dandthediffusionofnewtechnologiestoboostproductivity.
PublicinfrastructureiscriticalforeffectiveandefficienteconomicactivityandtherebyTFP
growthbyenablingfirmstoinvestinmoreproductivemachinery,preventingdelaysin
production,andcontributingtoeducationandhealthcareoftheworkforce(Aschauer,1989;
Munnell,1992;Hulten1996;Straub,2011;Deng,2013;CalderonandServen,2014;égert,2016).Thequalityofinstitutionalinfrastructureisnolessimportantforpoliticalandsocioeconomic
stabilityandeconomicdevelopmentbysafeguardingcivilandpropertyrightsandprovidingasafelivingandworkingenvironment(North,1990;KnackandKeefer,1995;EasterlyandLevine,2003;Acemoglu,Johnson,andRobinson,2004;Rodrik,Subramanian,andTrebbi,2004;ChandaandDalgaard,2008).Physicalinfrastructureandinstitutionsalsoplayanimportantroleintradeopenness,financialdevelopmentandtheefficientallocationofresources,whichinturn
determineproductivitygrowthacrossfirmsandindustries(GrossmanandHelpman,1991;
Edwards,1998;Beck,Levine,andLoayza,2000;MillerandUpadhay,2000;Foster,Haltiwanger,andKrizan,2001;AlcaláandCiccone,2004;HisehandKlenow,2009;RestucciaandRogerson,2017;CevikandMiryugin,2018).
III.DATAOVERVIEW
Theempiricalanalysispresentedinthispaperisbasedonanunbalancedpanelofannual
observationson26industriesin28EUcountriesduringtheperiod1995–2020.3Theprimary
datasetforindustry-leveldataisobtainedfromtheEU-KLEMSdatabase,whichprovideshigh-
qualitymeasuresofeconomicgrowth,productivity,employmentcreation,capitalformationandtechnologicalchangeattheindustrylevelforallEUmemberstates.4Inparticular,itmakesdataavailableondifferenttypesofcapitalandskills-differentiatedcategoriesoflabor.Grossoutputisdecomposedintothecontributionsofintermediateinputs(i.e.,energy,materials,andservices)as
3IndustriesaregroupedaccordingtothestatisticalclassificationofeconomicactivitiesbasedontheNomenclaturedesActivitéséconomiquesdanslaCommunautéEuropéenne(NACE).
4Thelatestreleaseofthedatasetispubliclyavailableat
https://euklems-intanprod-llee.luiss.it/
(Bontadinietal.,2023).O’MahonyandTimmer(2009)provideadetaileddescriptionofthecontentsandconstructionoftheEU-KLEMSdatabase.
7
wellasvalue-added,whichinturnisdecomposedtothecontributionsfromdifferenttypesofcapitalandlabor.
Dataareavailableforsevendifferenttypesofcapital,whichareaggregatedbasedontheuser
costofcapitaltoproducecapitalserviceflowsthattakeintoaccountthedifferentmarginal
productivitiesofthedifferentcomponentsofacountry’scapitalaccumulation.Inadditionto
aggregatemeasures,theEU-KLEMSdatabasealsomakesavailablethebreakdownforICTand
non-ICTphysicalcapitalspendingasashareofgrossfixedinvestment.5Wealsoobtainindustry-leveldataonintangiblecapitalaccumulationasmeasuredbyR&Dexpenditureasashareof
grossfixedinvestment.
Laborinputsaredifferentiatedwithrespecttoskilllevelsasmeasuredbyeducationalattainment(primary,secondary,andtertiary),age,andgender.Inthispaper,weusetheshareoftotal
workinghoursprovidedbyworkerswithtertiaryeducationtomeasuretheshareofhigh-skilledlaborinagivenindustry.Comparablecross-countrydataattheindustrylevelareavailablefor
threedifferentskilllevels,withlaborinputsaggregatedbasedonmarginalproductivities.ThesegranulardataseriesallowtheassessmentofTFPdevelopmentsexcludingtheimpactofchangesinthecompositionandqualityofbothcapitalandlaborinputs.
Thedependentvariableinthisstudyisindustry-levelTFPgrowth,whichiscommonlymeasuredasaresidualafteraccountingforphysicalcapitaldeepeningandhumancapitalaccumulation.TheEU-KLEMSdatabaseprovidesadecompositionofGDPgrowthintoitsmaindeterminants
basedonaproductionfunctionwhichincludesproductivecapitalandemploymentlevels
adjustedforhoursworked,age,andforskillcomposition.Accordingly,TFPgrowthisdefinedasaresidualterm:
Δyijt=Δvijt?wvijt?wΔkijt?wΔLijt
whereΔyijtisTFPgrowthincountryiandindustryjattimetandV,K,andLdenotevalue-
added,capital,andlabor,respectively.Thecoefficientswandwaretheaverageshareof
capitalandlaborinputs,respectively.Tomitigatetheeffectsofextremeoutliers,wewinsorizeindustry-levelvariablesatthe5thand95thpercentiles.
ThemainexplanatoryvariablesofinterestattheindustrylevelaretheTFPgrowthfrontieras
measuredbythehighestlevelofTFPgrowthinagivenindustryandyearandthetechnologicalgapasmeasuredbythedistancetofrontierdefinedasthelevelofTFPofacountryinagiven
industryandyearrelativetothehighestlevelofTFPinthatindustryintheEU.Thisrelative
distancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnewproductivity-enhancingknowledgeandtechnologies.Inaddition,weincludearangeofmacroeconomicandinstitutionalfactorsatthecountrylevel,suchasrealGDPpercapita,consumerpriceinflation,
tradeopenness,domesticcredittotheprivatesector(i.e.financialdevelopment),population,andbureaucraticqualityascontrolvariables,whicharedrawnfromtheIMF’sWorldEconomic
5ICTassetsincludecomputers,softwareandtelecommunicationequipment,whilenon-ICTassetsareproxiedbytransportationequipment.
8
Outlook(WEO),theWorldBank’sWorldDevelopmentIndicators(WDI),andtheInternationalCountryRiskGuide(ICRG)databases.
SummarystatisticsforthevariablesusedintheanalysisarepresentedinTable1.Weobserve
significantheterogeneityinaggregateandindustry-levelproductivitygrowthbetween28EU
countries,across26sectors,andovertheperiod1995–2020.AggregateTFPgrowthwas0.7
percentperyearonaverageintheEUbetween1996and2007butdeceleratedto0.1percent
aftertheGFC.Asaresult,overtheentiresampleperiodfrom1996to2020,averageTFPgrowthstoodat0.5percent,with11outof28EUcountriespresentinganegativeTFPgrowth.WealsoobservethatTFPgrowthinaccommodationandfoodservices—thelowestproductivitysector—was1.6percentagepointslowerthantheaverageTFPgrowthacrossallsectorsduringthe
sampleperiod,whileTFPgrowthinagriculture—thehighestproductivitysector—was1.4
percentagepointshigherthantheaverageTFPgrowth.Thereisalsosignificantheterogeneityinthetechnologicalgap.Withanaverageof-19.2percent,itvariesfrom-67.7percentto0percent.
Withregardstoindustry-levelfactors,weobservesimilarlylargevariationacrosssectors(Figure3).ICTcapitalspendingaveraged12.6percentofgrossfixedinvestment,withaminimumof0
percentandamaximumof44.6percent,whilenon-ICTcapitalspendingvariedfromaminimumof0.3percentofgrossfixedinvestmenttoamaximumof32.6percent,withanaverageof8.3
percent.Likewise,R&Dexpenditureasashareofgrossfixedinvestmentamountedtoanaverageof9.5percent,withaminimumof0percentandamaximumof47.8percent.
Table1.DescriptiveStatistics
Variable
Obs
Mean
SD
Min.
Max.
Industry-level
TFPgrowth
8,438
0.5
7.0
-50.0
100.0
Technologicalgap
9,151
-19.2
16.8
-67.7
0.0
ICTcapitalspending
11,879
0.1
0.1
0.0
0.4
Non-ICTcapitalspending
14,612
0.1
0.1
0.0
0.3
R&Dspending
12,315
0.1
0.1
0.0
0.5
Country-level
RealGDPpercapita
18,021
37873.8
18718.5
9544.1
122170.6
Inflation
17,969
5.3
41.3
-1.7
1061.2
Financialdevelopment
14,369
98.5
81.8
0.2
524.6
Tradeopenness
18,021
1.1
1.0
0.0
14.0
Bureaucraticquality
17,633
3.3
0.8
1.0
4.0
Population
18,021
18.1
22.8
0.4
83.2
Source:EU-KLEMS;IMF;WorldBank;ICRG;andauthors'calculations.
9
Figure3.Industry-LevelDevelopments
AverageTFPGrowth:Pre-GFC
AverageTFPGrowth:Post-GFC
(Percent)
Agriculture
FinanceandInsuranceManufacturing
WholesaleandretailtradeICT
Energy,waterandwasteTotal
Miningandquarrying
TransportationandstorageConstruction
Publicadmin,defenseandhealthAccomodationandfoodArtsandrecreation
ProfessionalandsupportserviceRealestate
(Percent)
ManufacturingAgriculture
WholesaleandretailtradeICT
Total
Professionalandsupportservice FinanceandInsurance TransportationandstoragePublicadmin,defenseandhealthRealestate
Construction Artsandrecreation MiningandquarryingEnergy,waterandwasteAccomodationandfood
-2-1.5-1-0.500.511.52
-2-1.5-1-0.500.511.52
MedianICTInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
MedianNon-ICTInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
ICT FinanceandinsuranceProfessionalandsupportservicesWholesaleandretailtrade
Artsandrecreation
Total
ManufacturingPublicadmin,defenseandhealth Accomodationandfood TransportationandstorageConstruction
Energy,waterandwasteMiningandquarryingAgriculture
Realestate
Transportationandstorage
ProfessionalandsupportserviceConstruction
WholesaleandretailtradeAgriculture
Total
AccomodationandfoodFinanceandInsuranceMiningandquarryingArtsandrecreation
Publicadmin,defenseandhealthManufacturing
Energy,waterandwasteICT
Realestate
010203040
AverageShareofHighSkillLaborbyIndustry
(Percent,measuredasshareoftotalemploymentineachindustry)
ICT
FinanceandInsurance
Realestate
TotalMiningandquarrying
ManufacturingWholesaleandretailtradeTransportationandstorage AccomodationandfoodConstruction
Agriculture
020406080
0204060
MedianR&DInvestmentbyIndustry
(Percent,measuredasashareoftotalinvestment)
ManufacturingProfessionalandsupportservicesPublicadmin,defenseandhealth
ICT
Total ArtsandrecreationWholesaleandretailtrade MiningandquarryingFinanceandInsurance
ConstructionEnergy,waterandwaste
AgricultureTransportationandstorageRealestate
Accomodationandfood
05101520
Sources:EUKLEMS;andauthors’calculations.
IV.ECONOMETRICMETHODOLOGY
Beyondglobalshocks,thereisamyriadoffactorscontributingtotheproductivityslowdownandcross-countryproductivitydifferentials.Inthispaper,wedevelopagranularanalysisbyusing
comparableindustry-leveldata—drawnfromtheEU-KLEMSdataset—andexplorethepatterns
andsourcesofTFPgrowthacrossthe28EUcountries.FollowingScarpettaandTressel(2002),
NicolettiandScarpetta(2003),Griffith,Redding,andVanReenen(2004),Acemoglu,Zilibotti,andAghion(2006),AghionandHowitt(2006),McMorrow,Werner,andTurrini(2010)andDabla-
10
Norrisetal.(2015),wemodelindustry-levelTFPgrowthusingthefollowingbaselinespecification:
+yj+μt+εijt
?Yijt=β0+β1?YLjt+β2(Yijt?1?YLjt?1)+βk∑kxt?1+βl∑kxjt?1(Yijt?1?YLjt?1)+ηi
inwhich?YijtisTFPgrowthincountryiandindustryjattimet.?YLjtdenotestheTFPgrowth
frontierintheEU,whichismeasuredbythehighestlevelofTFPgrowthinindustryjattimet.
TheTFPgrowthfrontiercapturestheextenttowhichcountriesareinvolvedincomparable
scientificandtechnologicalinnovationastheleadercountryorbenefitingfromknowledge
spillovers.(Yijt?1?YLjt?1)isthetechnologicalgapdefinedastheTFPdifferenceincountryiandindustryjattimetwithrespecttotheEUfrontier(highestlevelofTFP)inindustryjattimet.ThisrelativedistancetothefrontierrepresentsthepotentialforincreasingTFPbyadoptingnew
productivity-enhancingtechnologies.xt?1isavectorofindustry-levelandcountry-level
variables.Industry-levelvariablesincludeICTcapitalspending,non-ICTcapitalspending,R&Dspending,andtheshareofhigh-skilledlabor,whilecountry-levelvariablesincluderealGDPper
capita,consumerpriceinflation,tradeopenness,domesticcredittotheprivatesector,population,andbureaucraticquality.
Wealsoexplorehowindustry-levelfactors(ICTandnon-ICTcapitalexpenditures,R&Dspendingandtheshareofhigh-skilledlabor)interactwiththetechnologicalgap.Theseinteractionterms
aredesignatedbyxjt?1(Yijt?1?YLjt?1)incountryiandindustryjattimet.Thecoefficientsηi,
yjandμtdenotethetime-invariantindustry-specificeffectsandthetimeeffectscontrollingforcommonshocksthatmayaffectTFPgrowthacrossallindustriesattimet,respectively.6The
inclusionoffixedeffectsalsohelpsaddressendogeneityconcernsarisingfromomittedvariablebias.εijtistheidiosyncraticerrorterm.Robuststandarderrorsareclusteredattheindustrylevel.
V.EMPIRICALEVIDENCE
Ourbaselineresults,presentedinTable2,provideaconsistentassessmentofindustry-levelTFPgrowthin28EUcountriesovertheperiod1995–2020.Wedisplaythespecificationwithcountryfixedeffectsincolumn[1]forthewholesampleofindustries,incolumn[2]fortradablesectors,andincolumn[3]fornon-tradablesectors.7Wereplacecountryfixedeffectswitharangeof
country-levelcontrolvariablesandpresenttheseestimationsincolumn[4]forthewholesampleofindustries,incolumn[5]fortradablesectors,andincolumn[6]fornon-tradablesectors.
Becausedataontheshareofhigh-skilledlaborareavailableonlyfrom2008,wepresentthat
6Countryfixedeffectsarenotincludedwhenthemodelincorporatescountry-levelcontrolvariables.Theresultsarenotsensitivetoreplacingcountryfixedeffectswithcountry-levelvariables,whichprovideadditional
information.Wealsoobtainbroadlysimilarresultswiththeinclusionofcountry-yearandcountry-industryfixedeffects.
7Tradablesectorsincludeagriculture,forestry,fishing,mining,quarrying,andmanufacturing;whilenon-tradablesectorsincludeconstruction,wholesaleandretailtrade,transportation,storage,accommodation,foodservice,
ICT,finance,insurance,realestate,professionals
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 光伏電站場(chǎng)地租賃協(xié)議模板
- 不購(gòu)買施工保險(xiǎn)協(xié)議書
- 夫妻自愿離婚協(xié)議書范本4
- 2025年倉(cāng)儲(chǔ)保函協(xié)議
- 2025年代理協(xié)議范例
- 2025年醫(yī)療健康管理協(xié)議
- 2025年勞務(wù)派遣協(xié)議約定權(quán)利
- 2025年倉(cāng)庫(kù)存放細(xì)則協(xié)議
- 2025年農(nóng)業(yè)生產(chǎn)合作協(xié)議
- 2025年學(xué)校領(lǐng)導(dǎo)元旦講話稿模版(2篇)
- 體育與健康課一年級(jí)(水平一)課時(shí)教案全冊(cè)
- SAP-ABAP-實(shí)用培訓(xùn)教程
- 配電房施工組織設(shè)計(jì)方案(土建部分)
- 鏈條功率選用
- 國(guó)家開(kāi)放大學(xué)電大專科《英語(yǔ)教學(xué)法》2023-2024期末試題及答案(試卷代號(hào):2145)
- 年產(chǎn)30萬(wàn)噸合成氨脫碳工段工藝設(shè)計(jì)
- 管樁水平承載力計(jì)算
- 塑膠產(chǎn)品成型周期公式及計(jì)算
- 事業(yè)單位領(lǐng)導(dǎo)班子考核測(cè)評(píng)表
- LM-10Y液晶系列全自動(dòng)振動(dòng)時(shí)效使用說(shuō)明書
- 中國(guó)藥科大學(xué)有機(jī)化學(xué)期末試卷A
評(píng)論
0/150
提交評(píng)論