山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第1頁(yè)
山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第2頁(yè)
山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第3頁(yè)
山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第4頁(yè)
山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省霍州市煤電第一中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測(cè)卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某高中高三(1)班為了沖刺高考,營(yíng)造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書(shū)法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫(xiě)了一幅書(shū)法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰(shuí)寫(xiě)的,班主任對(duì)三人進(jìn)行了問(wèn)話,得到回復(fù)如下:小王說(shuō):“入班即靜”是我寫(xiě)的;小董說(shuō):“天道酬勤”不是小王寫(xiě)的,就是我寫(xiě)的;小李說(shuō):“細(xì)節(jié)決定成敗”不是我寫(xiě)的.若三人的說(shuō)法有且僅有一人是正確的,則“入班即靜”的書(shū)寫(xiě)者是()A.小王或小李 B.小王 C.小董 D.小李2.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.的展開(kāi)式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)4.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于5.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.6.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.47.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.8.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則()A. B. C. D.9.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱(chēng),則的單調(diào)遞增區(qū)間為()A. B.C. D.10.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱(chēng)為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺(jué)得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.11.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.12.函數(shù)在的圖象大致為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與拋物線交于兩點(diǎn),若,則弦的中點(diǎn)到直線的距離等于________.14.函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.15.已知數(shù)列的前項(xiàng)和為,,則滿足的正整數(shù)的值為_(kāi)_____.16.在中,角所對(duì)的邊分別為,為的面積,若,,則的形狀為_(kāi)_________,的大小為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線Γ:y2=2px(p>0)的焦點(diǎn)為F,P是拋物線Γ上一點(diǎn),且在第一象限,滿足(2,2)(1)求拋物線Γ的方程;(2)已知經(jīng)過(guò)點(diǎn)A(3,﹣2)的直線交拋物線Γ于M,N兩點(diǎn),經(jīng)過(guò)定點(diǎn)B(3,﹣6)和M的直線與拋物線Γ交于另一點(diǎn)L,問(wèn)直線NL是否恒過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn),否則說(shuō)明理由.18.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.19.(12分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時(shí),.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.20.(12分)如圖,在中,角的對(duì)邊分別為,且滿足,線段的中點(diǎn)為.(Ⅰ)求角的大?。唬á颍┮阎?,求的大小.21.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.22.(10分)的內(nèi)角的對(duì)邊分別為,且.(1)求;(2)若,點(diǎn)為邊的中點(diǎn),且,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說(shuō)法正確,則小王對(duì)應(yīng)“入班即靜”,而否定小董說(shuō)法后得出:小王對(duì)應(yīng)“天道酬勤”,則矛盾;若只有小董的說(shuō)法正確,則小董對(duì)應(yīng)“天道酬勤”,否定小李的說(shuō)法后得出:小李對(duì)應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對(duì)應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說(shuō)法矛盾;若小李的說(shuō)法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說(shuō)法得出:小王對(duì)應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書(shū)寫(xiě)者是:小李.故選:D.【點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.2、D【解析】

由復(fù)數(shù)除法運(yùn)算求出,再寫(xiě)出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對(duì)應(yīng)點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.3、B【解析】

由二項(xiàng)展開(kāi)式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時(shí)的個(gè)數(shù),即可求解.【詳解】,,當(dāng),,,時(shí),為有理項(xiàng),共項(xiàng).故選:B.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式項(xiàng)的特征,熟練掌握二項(xiàng)展開(kāi)式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.5、C【解析】

先畫(huà)出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.6、D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.7、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.8、A【解析】

由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算求解能力,屬于基礎(chǔ)題.9、D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對(duì)稱(chēng),所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點(diǎn)睛】本題主要考查正弦型函數(shù)的周期性,對(duì)稱(chēng)性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.10、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.11、C【解析】

根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.故選:C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.12、A【解析】

因?yàn)?,所以排除C、D.當(dāng)從負(fù)方向趨近于0時(shí),,可得.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知可知直線過(guò)拋物線的焦點(diǎn),求出弦的中點(diǎn)到拋物線準(zhǔn)線的距離,進(jìn)一步得到弦的中點(diǎn)到直線的距離.【詳解】解:如圖,直線過(guò)定點(diǎn),,而拋物線的焦點(diǎn)為,,弦的中點(diǎn)到準(zhǔn)線的距離為,則弦的中點(diǎn)到直線的距離等于.故答案為:.【點(diǎn)睛】本題考查拋物線的簡(jiǎn)單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14、【解析】

對(duì)函數(shù)零點(diǎn)問(wèn)題等價(jià)轉(zhuǎn)化,分離參數(shù)討論交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),,等價(jià)于函數(shù)恰有兩個(gè)公共點(diǎn),作出大致圖象:要有兩個(gè)交點(diǎn),即,所以.故答案為:【點(diǎn)睛】此題考查函數(shù)零點(diǎn)問(wèn)題,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對(duì)函數(shù)零點(diǎn)問(wèn)題恰當(dāng)變形,等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合求解.15、6【解析】

已知,利用,求出通項(xiàng),然后即可求解【詳解】∵,∴當(dāng)時(shí),,∴;當(dāng)時(shí),,∴,故數(shù)列是首項(xiàng)為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點(diǎn)睛】本題考查通項(xiàng)求解問(wèn)題,屬于基礎(chǔ)題16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)y2=4x;;(2)直線NL恒過(guò)定點(diǎn)(﹣3,0),理由見(jiàn)解析.【解析】

(1)根據(jù)拋物線的方程,求得焦點(diǎn)F(,0),利用(2,2),表示點(diǎn)P的坐標(biāo),再代入拋物線方程求解.(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),表示出MN的方程y和ML的方程y,因?yàn)锳(3,﹣2),B(3,﹣6)在這兩條直線上,分別代入兩直線的方程可得y1y2=12,然后表示直線NL的方程為:y﹣y1(x),代入化簡(jiǎn)求解.【詳解】(1)由拋物線的方程可得焦點(diǎn)F(,0),滿足(2,2)的P的坐標(biāo)為(2,2),P在拋物線上,所以(2)2=2p(2),即p2+4p﹣12=0,p>0,解得p=2,所以拋物線的方程為:y2=4x;(2)設(shè)M(x0,y0),N(x1,y1),L(x2,y2),則y12=4x1,y22=4x2,直線MN的斜率kMN,則直線MN的方程為:y﹣y0(x),即y①,同理可得直線ML的方程整理可得y②,將A(3,﹣2),B(3,﹣6)分別代入①,②的方程可得,消y0可得y1y2=12,易知直線kNL,則直線NL的方程為:y﹣y1(x),即yx,故yx,所以y(x+3),因此直線NL恒過(guò)定點(diǎn)(﹣3,0).【點(diǎn)睛】本題主要考查了拋物線的方程及直線與拋物線的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(1)證明見(jiàn)解析(2)【解析】

(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點(diǎn)睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1)1;(2)見(jiàn)解析【解析】

(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫(xiě)出韋達(dá)定理,根據(jù)弦長(zhǎng)公式,即可求出;(2)由,得,根據(jù)導(dǎo)數(shù)的幾何意義,求出拋物線在點(diǎn)點(diǎn)處切線方程,進(jìn)而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點(diǎn)點(diǎn)處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達(dá)定理、弦長(zhǎng)公式以及利用導(dǎo)數(shù)求切線方程,考查轉(zhuǎn)化思想和計(jì)算能力.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由正弦定理邊化角,再結(jié)合轉(zhuǎn)化即可求解;(Ⅱ)可設(shè),由,再由余弦定理解得,對(duì)中,由余弦定理有,通過(guò)勾股定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論