![廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷含解析_第1頁](http://file4.renrendoc.com/view11/M01/11/27/wKhkGWd1wEeADtIyAAGzOAwGg1U014.jpg)
![廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷含解析_第2頁](http://file4.renrendoc.com/view11/M01/11/27/wKhkGWd1wEeADtIyAAGzOAwGg1U0142.jpg)
![廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷含解析_第3頁](http://file4.renrendoc.com/view11/M01/11/27/wKhkGWd1wEeADtIyAAGzOAwGg1U0143.jpg)
![廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷含解析_第4頁](http://file4.renrendoc.com/view11/M01/11/27/wKhkGWd1wEeADtIyAAGzOAwGg1U0144.jpg)
![廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷含解析_第5頁](http://file4.renrendoc.com/view11/M01/11/27/wKhkGWd1wEeADtIyAAGzOAwGg1U0145.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省廣州增城市2025屆高考數(shù)學考前最后一卷預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值2.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.3.函數(shù)fxA. B.C. D.4.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.5.設(shè)是虛數(shù)單位,若復數(shù),則()A. B. C. D.6.已知集合,,若,則()A.或 B.或 C.或 D.或7.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.48.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.9.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.10.已知點(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b11.函數(shù)的大致圖象是A. B. C. D.12.設(shè)a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.14.執(zhí)行右邊的程序框圖,輸出的的值為.15.已知函數(shù)是定義在上的奇函數(shù),其圖象關(guān)于直線對稱,當時,(其中是自然對數(shù)的底數(shù),若,則實數(shù)的值為_____.16.已知函數(shù),若關(guān)于的方程在定義域上有四個不同的解,則實數(shù)的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒肺炎疫情發(fā)生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業(yè)績,某公司設(shè)計了一套產(chǎn)品促銷方案,并在某地區(qū)部分營銷網(wǎng)點進行試點.運作一年后,對“采用促銷”和“沒有采用促銷”的營銷網(wǎng)點各選取了50個,對比上一年度的銷售情況,分別統(tǒng)計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統(tǒng)計后制成如圖所示的頻率分布直方圖,并規(guī)定年銷售總額增長10個百分點及以上的營銷網(wǎng)點為“精英店”.(1)請你根據(jù)題中信息填充下面的列聯(lián)表,并判斷是否有的把握認為“精英店與采用促銷活動有關(guān)”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創(chuàng)造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數(shù)據(jù)后決定選擇作為回歸模型進行擬合.具體數(shù)據(jù)如下表,表中的:①根據(jù)上表數(shù)據(jù)計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據(jù)所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.附①:附②:對應一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.18.(12分)已知函數(shù)的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數(shù)的取值范圍.19.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.20.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
A.通過線面的垂直關(guān)系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).2、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.3、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→04、D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.5、A【解析】
結(jié)合復數(shù)的除法運算和模長公式求解即可【詳解】∵復數(shù),∴,,則,故選:A.【點睛】本題考查復數(shù)的除法、模長、平方運算,屬于基礎(chǔ)題6、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.7、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。8、A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點對稱);(2)函數(shù)關(guān)于點對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則9、B【解析】
首先求得兩曲線的交點坐標,據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【點睛】本題主要考查定積分的概念與計算,屬于中等題.10、B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.11、A【解析】
利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應用,屬于中檔題.12、A【解析】
根據(jù)題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點坐標為(1,0),
則函數(shù)在點(1,f(1))處的切線方程為,
即,
故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,根據(jù)導數(shù)和切線斜率之間的關(guān)系是解決本題的關(guān)鍵.14、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應填:考點:1、程序框圖;2、定積分.15、【解析】
先推導出函數(shù)的周期為,可得出,代值計算,即可求出實數(shù)的值.【詳解】由于函數(shù)是定義在上的奇函數(shù),則,又該函數(shù)的圖象關(guān)于直線對稱,則,所以,,則,所以,函數(shù)是周期為的周期函數(shù),所以,解得.故答案為:.【點睛】本題考查利用函數(shù)的對稱性計算函數(shù)值,解題的關(guān)鍵就是結(jié)合函數(shù)的奇偶性與對稱軸推導出函數(shù)的周期,考查推理能力與計算能力,屬于中等題.16、【解析】
由題意可在定義域上有四個不同的解等價于關(guān)于原點對稱的函數(shù)與函數(shù)的圖象有兩個交點,運用參變分離和構(gòu)造函數(shù),進而借助導數(shù)分析單調(diào)性與極值,畫出函數(shù)圖象,即可得到所求范圍.【詳解】已知定義在上的函數(shù)若在定義域上有四個不同的解等價于關(guān)于原點對稱的函數(shù)與函數(shù)f(x)=lnx-x(x>0)的圖象有兩個交點,聯(lián)立可得有兩個解,即可設(shè),則,進而且不恒為零,可得在單調(diào)遞增.由可得時,單調(diào)遞減;時,單調(diào)遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數(shù)解決方程的根的問題,還考查了等價轉(zhuǎn)化思想與函數(shù)對稱性的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,有把握;(2)①;②元時【解析】
(1)直接由題意列出列聯(lián)表,通過計算,可判斷精英店與采用促銷活動是否有關(guān).(2)①代入表中數(shù)據(jù),結(jié)合公式求出;②由①中所得的線性回歸方程,若售價為,單價利潤為,日銷售量為,進而可求出日利潤,結(jié)合導數(shù)可求最值.【詳解】解:(1)由題意知,采用促銷中精英店的數(shù)量為,采用促銷中非精英店的數(shù)量為;沒有采用促銷中精英店的數(shù)量為,沒有采用促銷中非精英店的數(shù)量為,列聯(lián)表為采用促銷沒有采用促銷合計精英店352055非精英店153045合計5050100因為有的把握認為“精英店與采用促銷活動有關(guān)”.(2)①由公式可得:所以回歸方程為②若售價為,單件利潤為,日銷售為,故日利潤,解得.當時,單調(diào)遞增;當時,單調(diào)遞減.故當售價元時,日利潤達到最大為元.【點睛】本題考查了獨立性檢驗,考查了線性回歸方程的求法,考查了函數(shù)最值的求解.在求函數(shù)的最值時,常用的方法有:函數(shù)圖像法、結(jié)合函數(shù)單調(diào)性分析最值、基本不等式法、導數(shù)法.其中最常用的還是導數(shù)法.18、(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.【點睛】本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.19、(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,,所以,,.設(shè)平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題21、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 激發(fā)創(chuàng)造力生產(chǎn)團隊拓展活動實戰(zhàn)教學
- Unit 5 Music Discovering Useful Structures 說課稿-2023-2024學年高中英語人教版(2019)必修第二冊
- 現(xiàn)代城市規(guī)劃與建筑設(shè)計的融合策略
- 環(huán)保理念下的辦公空間設(shè)計
- 醫(yī)療護理醫(yī)學培訓 藥物過敏試驗及過敏反應的處理課件
- 3 拍手歌 說課稿-2024-2025學年語文二年級上冊統(tǒng)編版
- 生產(chǎn)安全管理與績效評估體系的構(gòu)建
- 環(huán)境藝術(shù)與商業(yè)空間的室內(nèi)設(shè)計探索
- 法規(guī)驅(qū)動下的企業(yè)網(wǎng)絡(luò)安全策略制定
- 環(huán)境科學與國際合作項目分析
- 2003年版勞動合同范本
- 全名校北師大版數(shù)學五年級下冊第三單元達標測試卷(含答案)
- 新員工入職通識考試(中軟國際)
- 四星級酒店工程樣板房裝修施工匯報
- 博士后進站申請書博士后進站申請書八篇
- 華為攜手深圳國際會展中心創(chuàng)建世界一流展館
- 2023版思想道德與法治專題2 領(lǐng)悟人生真諦 把握人生方向 第3講 創(chuàng)造有意義的人生
- 全過程工程咨詢服務技術(shù)方案
- GB/T 41509-2022綠色制造干式切削工藝性能評價規(guī)范
- 土木工程畢業(yè)設(shè)計(論文)-五層宿舍樓建筑結(jié)構(gòu)設(shè)計
- 青年卒中 幻燈
評論
0/150
提交評論