河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第1頁
河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第2頁
河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第3頁
河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第4頁
河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省邯鄲市永年區(qū)第二中學(xué)2025屆高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.42.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.3.設(shè)遞增的等比數(shù)列的前n項(xiàng)和為,已知,,則()A.9 B.27 C.81 D.4.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.125.已知函數(shù),若對于任意的,函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.6.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.7.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)8.設(shè)集合,,若,則的取值范圍是()A. B. C. D.9.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.410.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q11.函數(shù)的部分圖象大致是()A. B.C. D.12.已知集合,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在邊長為的菱形中,點(diǎn)在菱形所在的平面內(nèi).若,則_____.14.若,則__________.15.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.16.邊長為2的正方形經(jīng)裁剪后留下如圖所示的實(shí)線圍成的部分,將所留部分折成一個(gè)正四棱錐.當(dāng)該棱錐的體積取得最大值時(shí),其底面棱長為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,求證:(1);(2).18.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.19.(12分)已知函數(shù).(1)解不等式:;(2)求證:.20.(12分)某貧困地區(qū)幾個(gè)丘陵的外圍有兩條相互垂直的直線型公路,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,以所在的直線分別為軸,軸,建立平面直角坐標(biāo)系,如圖所示,山區(qū)邊界曲線為,設(shè)公路與曲線相切于點(diǎn),的橫坐標(biāo)為.(1)當(dāng)為何值時(shí),公路的長度最短?求出最短長度;(2)當(dāng)公路的長度最短時(shí),設(shè)公路交軸,軸分別為,兩點(diǎn),并測得四邊形中,,,千米,千米,求應(yīng)開鑿的隧道的長度.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.22.(10分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.2、B【解析】

根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.3、A【解析】

根據(jù)兩個(gè)已知條件求出數(shù)列的公比和首項(xiàng),即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因?yàn)?且數(shù)列遞增,所以.又,解得,故.故選:A【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)和求和公式,意在考查學(xué)生對這些知識的理解掌握水平.4、D【解析】

推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.5、D【解析】

將原題等價(jià)轉(zhuǎn)化為方程在內(nèi)都有兩個(gè)不同的根,先求導(dǎo),可判斷時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此,再令,求導(dǎo)得,結(jié)合韋達(dá)定理可知,要滿足題意,只能是存在零點(diǎn),使得在有解,通過導(dǎo)數(shù)可判斷當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù);則應(yīng)滿足,再結(jié)合,構(gòu)造函數(shù),求導(dǎo)即可求解;【詳解】函數(shù)在內(nèi)都有兩個(gè)不同的零點(diǎn),等價(jià)于方程在內(nèi)都有兩個(gè)不同的根.,所以當(dāng)時(shí),,是增函數(shù);當(dāng)時(shí),,是減函數(shù).因此.設(shè),,若在無解,則在上是單調(diào)函數(shù),不合題意;所以在有解,且易知只能有一個(gè)解.設(shè)其解為,當(dāng)時(shí),在上是增函數(shù);當(dāng)時(shí),在上是減函數(shù).因?yàn)?,方程在?nèi)有兩個(gè)不同的根,所以,且.由,即,解得.由,即,所以.因?yàn)?,所以,代入,?設(shè),,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)個(gè)數(shù)求解參數(shù)取值范圍問題,構(gòu)造函數(shù)法,導(dǎo)數(shù)法研究函數(shù)增減性與最值關(guān)系,轉(zhuǎn)化與化歸能力,屬于難題6、C【解析】

,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.7、C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于??碱}型.8、C【解析】

由得出,利用集合的包含關(guān)系可得出實(shí)數(shù)的取值范圍.【詳解】,且,,.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】可以是共4個(gè),選D.10、B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識與方法的綜合運(yùn)用,以及分析問題解決問題的能力。11、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項(xiàng).【詳解】,函數(shù)是奇函數(shù),排除,時(shí),,時(shí),,排除,當(dāng)時(shí),,時(shí),,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項(xiàng)判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項(xiàng).12、D【解析】

根據(jù)集合的基本運(yùn)算即可求解.【詳解】解:,,,則故選:D.【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

以菱形的中心為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,再設(shè),根據(jù)求出的坐標(biāo),進(jìn)而求得即可.【詳解】解:連接設(shè)交于點(diǎn)以點(diǎn)為原點(diǎn),分別以直線為軸,建立如圖所示的平面直角坐標(biāo)系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解向量數(shù)量積的有關(guān)問題,屬于中檔題.14、【解析】

由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計(jì)算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點(diǎn)睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.15、20【解析】

由三視圖知該幾何體是一個(gè)圓柱與一個(gè)半球的四分之三的組合,利用球體體積公式、圓柱體積公式計(jì)算即可.【詳解】由三視圖知,該幾何體是由一個(gè)半徑為2的半球的四分之三和一個(gè)底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點(diǎn)睛】本題考查三視圖以及幾何體體積,考查學(xué)生空間想象能力以及數(shù)學(xué)運(yùn)算能力,是一道容易題.16、【解析】

根據(jù)題意,建立棱錐體積的函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可.【詳解】設(shè)底面邊長為,則斜高為,即此四棱錐的高為,所以此四棱錐體積為,令,令,易知函數(shù)在時(shí)取得最大值.故此時(shí)底面棱長.故答案為:.【點(diǎn)睛】本題考查棱錐體積的求解,涉及利用導(dǎo)數(shù)研究體積最大值的問題,屬綜合中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】

(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個(gè)式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當(dāng)且僅當(dāng)a=b=c等號成立∴.【點(diǎn)睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.18、(1)(2)的遞減區(qū)間為和【解析】

(1)化簡函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.19、(1);(2)見解析.【解析】

(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質(zhì),,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.【點(diǎn)睛】本題考查了絕對值不等式得求解和恒成立問題,考查了學(xué)生分類討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.20、(1)當(dāng)時(shí),公路的長度最短為千米;(2)(千米).【解析】

(1)設(shè)切點(diǎn)的坐標(biāo)為,利用導(dǎo)數(shù)的幾何意義求出切線的方程為,根據(jù)兩點(diǎn)間距離得出,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,從而得出極值和最值,即可得出結(jié)果;(2)在中,由余弦定理得出,利用正弦定理,求出,最后根據(jù)勾股定理即可求出的長度.【詳解】(1)由題可知,設(shè)點(diǎn)的坐標(biāo)為,又,則直線的方程為,由此得直線與坐標(biāo)軸交點(diǎn)為:,則,故,設(shè),則.令,解得=10.當(dāng)時(shí),是減函數(shù);當(dāng)時(shí),是增函數(shù).所以當(dāng)時(shí),函數(shù)有極小值,也是最小值,所以,此時(shí).故當(dāng)時(shí),公路的長度最短,最短長度為千米.(2)在中,,,所以,所以,根據(jù)正弦定理,,,,又,所以.在中,,,由勾股定理可得,即,解得,(千米).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決實(shí)際的最值問題,涉及構(gòu)造函數(shù)法以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,還考查正余弦定理的實(shí)際應(yīng)用,還考查解題分析能力和計(jì)算能力.21、(1)(2)證明見解析【解析】

(1),①當(dāng)時(shí),,②兩式相減即得數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求和證明.【詳解】(1)解:,①當(dāng)時(shí),.當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論