山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第1頁
山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第2頁
山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第3頁
山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第4頁
山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

山東省五蓮縣2025屆高三第一次調(diào)研測試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.122.設是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.4.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.5.已知數(shù)列的前項和為,且,,則()A. B. C. D.6.集合,,則()A. B. C. D.7.已知等式成立,則()A.0 B.5 C.7 D.138.已知函數(shù),則不等式的解集為()A. B. C. D.9.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.210.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.3211.已知是定義是上的奇函數(shù),滿足,當時,,則函數(shù)在區(qū)間上的零點個數(shù)是()A.3 B.5 C.7 D.912.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.14.直線xsinα+y+2=0的傾斜角的取值范圍是________________.15.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.16.已知,則________.(填“>”或“=”或“<”).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.18.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設,,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.19.(12分)在中,,,.求邊上的高.①,②,③,這三個條件中任選一個,補充在上面問題中并作答.20.(12分)如圖,三棱柱中,側(cè)面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.21.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.22.(10分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.2、A【解析】

根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設,當時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關鍵,屬于中等題.3、D【解析】

設點,由,得關于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.4、D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.5、C【解析】

根據(jù)已知條件判斷出數(shù)列是等比數(shù)列,求得其通項公式,由此求得.【詳解】由于,所以數(shù)列是等比數(shù)列,其首項為,第二項為,所以公比為.所以,所以.故選:C【點睛】本小題主要考查等比數(shù)列的證明,考查等比數(shù)列通項公式,屬于基礎題.6、A【解析】

計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.7、D【解析】

根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數(shù)學運算能力.8、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應用,意在考查學生對這些知識的理解掌握水平.9、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎題.10、A【解析】

計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點睛】本題考查了集合的真子集個數(shù),意在考查學生的計算能力.11、D【解析】

根據(jù)是定義是上的奇函數(shù),滿足,可得函數(shù)的周期為3,再由奇函數(shù)的性質(zhì)結(jié)合已知可得,利用周期性可得函數(shù)在區(qū)間上的零點個數(shù).【詳解】∵是定義是上的奇函數(shù),滿足,,可得,

函數(shù)的周期為3,

∵當時,,

令,則,解得或1,

又∵函數(shù)是定義域為的奇函數(shù),

∴在區(qū)間上,有.

由,取,得,得,

∴.

又∵函數(shù)是周期為3的周期函數(shù),

∴方程=0在區(qū)間上的解有共9個,

故選D.【點睛】本題考查根的存在性及根的個數(shù)判斷,考查抽象函數(shù)周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.12、B【解析】因為從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.14、【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:15、【解析】

設直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關系,屬于中檔題.16、【解析】

注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應用,考查學生的數(shù)學運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標系:假設在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結(jié),則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問題,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.18、(Ⅰ)證明見解析(Ⅱ)【解析】

(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設,計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設,則,設平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學生邏輯推理,空間想象,數(shù)學運算的能力,屬于中檔題.19、詳見解析【解析】

選擇①,利用正弦定理求得,利用余弦定理求得,再計算邊上的高.選擇②,利用正弦定理得出,由余弦定理求出,再求邊上的高.選擇③,利用余弦定理列方程求出,再計算邊上的高.【詳解】選擇①,在中,由正弦定理得,即,解得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇②,在中,由正弦定理得,又因為,所以,即;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.選擇③,在中,由,得;由余弦定理得,即,化簡得,解得或(舍去);所以邊上的高為.【點睛】本小題主要考查真閑的了、余弦定理解三角形,屬于中檔題.20、(1)見解析;(2).【解析】

(1)根據(jù)菱形的特征和題中條件得到平面,結(jié)合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標系.則所以設平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉(zhuǎn)化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.21、(1)(2)證明見解析【解析】

(1)在上有解,,設,求導根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調(diào)遞增;當時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當時,單調(diào)遞減;當時,單調(diào)遞增.所以是的最小值點,,則,故.【點睛】本題考查了函數(shù)的切線問題,證明不等式,意在考查學生的綜合應用能力和轉(zhuǎn)化能力.22、(1)見解析;(2).【解析】

(1)設點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論