河南省長葛市第三實驗高中2025屆高考數學二模試卷含解析_第1頁
河南省長葛市第三實驗高中2025屆高考數學二模試卷含解析_第2頁
河南省長葛市第三實驗高中2025屆高考數學二模試卷含解析_第3頁
河南省長葛市第三實驗高中2025屆高考數學二模試卷含解析_第4頁
河南省長葛市第三實驗高中2025屆高考數學二模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省長葛市第三實驗高中2025屆高考數學二模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.632.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.3.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.4.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學生的成績,并根據這2000名學生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內的學生人數為()A.800 B.1000 C.1200 D.16006.我國古代數學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺7.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.908.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤9.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.10.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.11.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知集合,則=A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.14.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.15.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________16.如果函數(,且,)在區(qū)間上單調遞減,那么的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.18.(12分)已知直線的參數方程:(為參數)和圓的極坐標方程:(1)將直線的參數方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.19.(12分)某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統(tǒng)計圖.(1)根據條形統(tǒng)計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數據:取,.20.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.21.(12分)已知數列的前項和和通項滿足.(1)求數列的通項公式;(2)已知數列中,,,求數列的前項和.22.(10分)選修4-4:坐標系與參數方程在平面直角坐標系中,直線的參數方程為(為參數).以原點為極點,軸的正半軸為極軸建立極坐標系,且曲線的極坐標方程為.(1)寫出直線的普通方程與曲線的直角坐標方程;(2)設直線上的定點在曲線外且其到上的點的最短距離為,試求點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.2、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.3、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.4、B【解析】

根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.5、B【解析】

由圖可列方程算得a,然后求出成績在內的頻率,最后根據頻數=總數×頻率可以求得成績在內的學生人數.【詳解】由頻率和為1,得,解得,所以成績在內的頻率,所以成績在內的學生人數.故選:B【點睛】本題主要考查頻率直方圖的應用,屬基礎題.6、A【解析】

根據三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.7、A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.8、B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.9、D【解析】

先求出橢圓方程,再利用橢圓的定義得到,利用二次函數的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.10、C【解析】

由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數學運算能力,難度一般.11、B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.12、C【解析】

本題考查集合的交集和一元二次不等式的解法,滲透了數學運算素養(yǎng).采取數軸法,利用數形結合的思想解題.【詳解】由題意得,,則.故選C.【點睛】不能領會交集的含義易致誤,區(qū)分交集與并集的不同,交集取公共部分,并集包括二者部分.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】

由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結果:【點睛】本題考查了雙曲線和的標準方程及其性質,涉及到點到直線距離公式的考查,屬于基礎題.14、【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.15、【解析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.16、18【解析】

根據函數單調性的性質,分一次函數和一元二次函數的對稱性和單調區(qū)間的關系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區(qū)間上單調遞減,則,即,則.②當時,,函數開口向上,對稱軸為,因為在區(qū)間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數與二次函數的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數的基本關系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設點,由得:,即,,,點,平面的一個法向量,又,,設平面的一個法向量為,則,令,則平面的一個法向量為.設二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關系的轉化.空間中的角的計算,可以建立空間直角坐標系把角的計算歸結為向量的夾角的計算,也可以構建空間角,把角的計算歸結平面圖形中的角的計算.18、(1):,:;(2)【解析】

(1)消去參數求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標方程.(2)求得直線的標準參數方程,代入圓的直角坐標方程,化簡后寫出韋達定理,根據直線參數的幾何意義,求得的值.【詳解】(1)消去參數,得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標方程為;(2)經檢驗點在直線上,可轉化為①,將①式代入圓的直角坐標方程為得,化簡得,設是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數方程化為普通方程、極坐標方程化為直角坐標方程,考查利用直線參數的幾何意義求解距離問題,屬于中檔題.19、(1)60%;(2)(i)0.12(ii)【解析】

(1)利用上線人數除以總人數求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.20、證明見解析【解析】

根據相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.【點睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論