2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷含解析_第1頁
2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷含解析_第2頁
2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷含解析_第3頁
2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷含解析_第4頁
2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省廣州市荔灣區(qū)真光中學高三3月份第一次模擬考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正項數(shù)列滿足:,設,當最小時,的值為()A. B. C. D.2.已知復數(shù),滿足,則()A.1 B. C. D.53.已知數(shù)列為等差數(shù)列,為其前項和,,則()A. B. C. D.4.已知復數(shù)和復數(shù),則為A. B. C. D.5.若復數(shù)滿足,復數(shù)的共軛復數(shù)是,則()A.1 B.0 C. D.6.已知函數(shù),為的零點,為圖象的對稱軸,且在區(qū)間上單調,則的最大值是()A. B. C. D.7.函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位8.若單位向量,夾角為,,且,則實數(shù)()A.-1 B.2 C.0或-1 D.2或-19.函數(shù)圖象的大致形狀是()A. B.C. D.10.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.511.設全集,集合,,則集合()A. B. C. D.12.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標函數(shù)的最小值為-1,則實數(shù)等于______.14.若x,y滿足,且y≥?1,則3x+y的最大值_____15.直線是曲線的一條切線為自然對數(shù)的底數(shù)),則實數(shù)__________.16.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數(shù)方程是(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線的極坐標方程;(2)在曲線上取一點,直線繞原點逆時針旋轉,交曲線于點,求的最大值.18.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.19.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.20.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.21.(12分)如圖,已知拋物線:與圓:()相交于,,,四個點,(1)求的取值范圍;(2)設四邊形的面積為,當最大時,求直線與直線的交點的坐標.22.(10分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.2、A【解析】

首先根據(jù)復數(shù)代數(shù)形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數(shù)求模問題,考查復數(shù)的除法運算,屬于基礎題.3、B【解析】

利用等差數(shù)列的性質求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質可求出的值.【詳解】由等差數(shù)列的性質可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質的應用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎題.4、C【解析】

利用復數(shù)的三角形式的乘法運算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.【點睛】熟練掌握復數(shù)的三角形式的乘法運算法則是解題的關鍵,復數(shù)問題高考必考,常見考點有:點坐標和復數(shù)的對應關系,點的象限和復數(shù)的對應關系,復數(shù)的加減乘除運算,復數(shù)的模長的計算.5、C【解析】

根據(jù)復數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數(shù)代數(shù)形式的運算法則,考查共軛復數(shù)的概念,屬于基礎題.6、B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數(shù),,為的零點,為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.7、A【解析】依題意有的周期為.而,故應左移.8、D【解析】

利用向量模的運算列方程,結合向量數(shù)量積的運算,求得實數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數(shù)量積的運算,屬于基礎題.9、B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.10、B【解析】

利用雙曲線的定義和條件中的比例關系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉化為a,b,c的關系式.11、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.12、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,結合目標函數(shù)的最小值,利用數(shù)形結合即可得到結論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法,屬于基礎題.14、5.【解析】

由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】由題意作出可行域如圖陰影部分所示.設,當直線經過點時,取最大值5.故答案為:5【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.15、【解析】

根據(jù)切線的斜率為,利用導數(shù)列方程,由此求得切點的坐標,進而求得切線方程,通過對比系數(shù)求得的值.【詳解】,則,所以切點為,故切線為,即,故.故答案為:【點睛】本小題主要考查利用導數(shù)求解曲線的切線方程有關問題,屬于基礎題.16、【解析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結合圖中數(shù)據(jù),計算它的體積為.故答案為:.【點睛】本題考查了根據(jù)三視圖求簡單組合體的體積應用問題,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)最大值為【解析】

(1)利用消去參數(shù),求得曲線的普通方程,再轉化為極坐標方程.(2)設出兩點的坐標,求得的表達式,并利用三角恒等變換進行化簡,再結合三角函數(shù)最值的求法,求得的最大值.【詳解】(1)由消去得曲線的普通方程為.所以的極坐標方程為,即.(2)不妨設,,,,,則當時,取得最大值,最大值為.【點睛】本小題主要考查參數(shù)方程化為普通方程,普通方程化為極坐標方程,考查極坐標系下線段長度的乘積的最值的求法,考查三角恒等變換,考查三角函數(shù)最值的求法,屬于中檔題.18、(1)(2)【解析】

(1))當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.【點睛】本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎題.19、(1)(2)4【解析】

(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關系,以及垂直關系,得出關系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設,直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點睛】本題考查直線與拋物線的位置關系,以及拋物線與圓的方程應用問題,考查轉化思想以及計算能力,是中檔題.20、(1)證明見解析;(2)1【解析】

(1)由菱形的性質和線面垂直的性質,可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.【點睛】本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.21、(1)(2)點的坐標為【解析】

將拋物線方程與圓方程聯(lián)立,消去得到關于的一元二次方程,拋物線與圓有四個交點需滿足關于的一元二次方程在上有兩個不等的實數(shù)根,根據(jù)二次函數(shù)的有關性質即可得到關于的不等式組,解不等式即可.不妨設拋物線與圓的四個交點坐標為,,,,據(jù)此可表示出直線、的方程,聯(lián)立方程即可表示出點坐標,再根據(jù)等腰梯形的面積公式可得四邊形的面積的表達式,令,由及知,對關于的面積函數(shù)進行求導,判斷其單調性和最值,即可求出四邊形的面積取得最大值時的值,進而求出點坐標.【詳解】(1)聯(lián)立拋物線與圓的方程消去,得.由題意可知在上有兩個不等的實數(shù)根.所以解得,所以的取值范圍為.(2)根據(jù)(1)可設方程的兩個根分別為,(),則,,,,且,,所以直線、的方程分別為,,聯(lián)立方程可得,點的坐標為,因為四邊形為等腰梯形,所以,令,則,所以,因為,所以當時,;當時,,所以函數(shù)在上單調遞增,在上單調遞減,即當時,四邊形的面積取得最大值,因為,點的坐標為,所以當四邊形的面積取得最大值時,點的坐標為.【點睛】本題考查利用導數(shù)求函數(shù)的極值與最值、拋物線及其標準方程及直線與圓錐曲線相關的最值問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論