版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省涼山州會(huì)東中學(xué)2025屆高三第二次調(diào)研數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.42.是邊長(zhǎng)為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時(shí),四棱錐的體積為()A. B. C. D.3.“中國(guó)剩余定理”又稱“孫子定理”,最早可見于中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612424.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.已知橢圓的短軸長(zhǎng)為2,焦距為分別是橢圓的左、右焦點(diǎn),若點(diǎn)為上的任意一點(diǎn),則的取值范圍為()A. B. C. D.6.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.7.命題“”的否定是()A. B.C. D.8.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.9.已知集合,集合,則()A. B. C. D.10.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.11.如圖,在△ABC中,點(diǎn)M是邊BC的中點(diǎn),將△ABM沿著AM翻折成△AB'M,且點(diǎn)B'不在平面AMC內(nèi),點(diǎn)P是線段B'C上一點(diǎn).若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內(nèi)心 D.外心12.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示梯子結(jié)構(gòu)的點(diǎn)數(shù)依次構(gòu)成數(shù)列,則________.14.工人在安裝一個(gè)正六邊形零件時(shí),需要固定如圖所示的六個(gè)位置的螺栓.若按一定順序?qū)⒚總€(gè)螺栓固定緊,但不能連續(xù)固定相鄰的2個(gè)螺栓.則不同的固定螺栓方式的種數(shù)是________.15.驗(yàn)證碼就是將一串隨機(jī)產(chǎn)生的數(shù)字或符號(hào),生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識(shí)別其中的驗(yàn)證碼信息,輸入表單提交網(wǎng)站驗(yàn)證,驗(yàn)證成功后才能使用某項(xiàng)功能.很多網(wǎng)站利用驗(yàn)證碼技術(shù)來防止惡意登錄,以提升網(wǎng)絡(luò)安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗(yàn)證碼由0,1,2,…,9中的五個(gè)數(shù)字隨機(jī)組成.將中間數(shù)字最大,然后向兩邊對(duì)稱遞減的驗(yàn)證碼稱為“鐘型驗(yàn)證碼”(例如:如14532,12543),已知某人收到了一個(gè)“鐘型驗(yàn)證碼”,則該驗(yàn)證碼的中間數(shù)字是7的概率為__________.16.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為是橢圓的一個(gè)焦點(diǎn),點(diǎn),直線的斜率為1.(1)求橢圓的方程;(1)若過點(diǎn)的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,是否存在直線使得?若存在,求出的方程;若不存在,請(qǐng)說明理由.18.(12分)如圖,湖中有一個(gè)半徑為千米的圓形小島,岸邊點(diǎn)與小島圓心相距千米,為方便游人到小島觀光,從點(diǎn)向小島建三段棧道,,,湖面上的點(diǎn)在線段上,且,均與圓相切,切點(diǎn)分別為,,其中棧道,,和小島在同一個(gè)平面上.沿圓的優(yōu)?。▓A上實(shí)線部分)上再修建棧道.記為.用表示棧道的總長(zhǎng)度,并確定的取值范圍;求當(dāng)為何值時(shí),棧道總長(zhǎng)度最短.19.(12分)已知橢圓:的離心率為,左、右頂點(diǎn)分別為、,過左焦點(diǎn)的直線交橢圓于、兩點(diǎn)(異于、兩點(diǎn)),當(dāng)直線垂直于軸時(shí),四邊形的面積為1.(1)求橢圓的方程;(2)設(shè)直線、的交點(diǎn)為;試問的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.20.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).21.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。22.(10分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績(jī)“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.2、D【解析】
首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時(shí),外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時(shí),外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對(duì)于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.【點(diǎn)睛】本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個(gè)是一個(gè)難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.3、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。4、A【解析】
根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時(shí),,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點(diǎn)睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.5、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因?yàn)辄c(diǎn)為上的任意一點(diǎn),故.又,因?yàn)椋?,所?故選:D.【點(diǎn)睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點(diǎn)分別是,點(diǎn)為上的任意一點(diǎn),則有,我們常用這個(gè)性質(zhì)來考慮與焦點(diǎn)三角形有關(guān)的問題,本題屬于基礎(chǔ)題.6、C【解析】
由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.7、D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.8、A【解析】
由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.9、D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.【點(diǎn)睛】考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.10、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.11、A【解析】
根據(jù)題意P到兩個(gè)平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個(gè)平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點(diǎn).故選:A.【點(diǎn)睛】本題考查了二面角,等體積法,意在考查學(xué)生的計(jì)算能力和空間想象能力.12、D【解析】
由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點(diǎn)睛】本題考查程序框圖.解題可模擬程序運(yùn)行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.【點(diǎn)睛】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.14、60【解析】分析:首先將選定第一個(gè)釘,總共有6種方法,假設(shè)選定1號(hào),之后分析第二步,第三步等,按照分類加法計(jì)數(shù)原理,可以求得共有10種方法,利用分步乘法計(jì)數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個(gè)可以從6個(gè)釘里任意選一個(gè),共有6種選擇方法,并且是機(jī)會(huì)相等的,若第一個(gè)選1號(hào)釘?shù)臅r(shí)候,第二個(gè)可以選3,4,5號(hào)釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點(diǎn)睛:該題考查的是有關(guān)分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,在解題的過程中,需要逐個(gè)的將對(duì)應(yīng)的過程寫出來,所以利用列舉法將對(duì)應(yīng)的結(jié)果列出,而對(duì)于第一個(gè)選哪個(gè)是機(jī)會(huì)均等的,從而用乘法運(yùn)算得到結(jié)果.15、【解析】
首先判斷出中間號(hào)碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計(jì)算公式計(jì)算出所求概率.【詳解】根據(jù)“鐘型驗(yàn)證碼”中間數(shù)字最大,然后向兩邊對(duì)稱遞減,所以中間的數(shù)字可能是.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.所以該驗(yàn)證碼的中間數(shù)字是7的概率為.故答案為:【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,考查分類加法計(jì)數(shù)原理、分類乘法計(jì)數(shù)原理的應(yīng)用,考查運(yùn)算求解能力,屬于中檔題.16、2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(1)不存在,理由見解析【解析】
(1)利用離心率和過點(diǎn),列出等式,即得解(1)設(shè)的方程為,與橢圓聯(lián)立,利用韋達(dá)定理表示中點(diǎn)N的坐標(biāo),用點(diǎn)坐標(biāo)表示,利用韋達(dá)關(guān)系代入,得到關(guān)于k的等式,即可得解.【詳解】(1)由題意,可得解得則,故橢圓的方程為.(1)當(dāng)直線的斜率不存在時(shí),,不符合題意.當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,聯(lián)立得,設(shè),則,,,即.設(shè),則,,,則,即,整理得,此方程無(wú)解,故的方程不存在.綜上所述,不存在直線使得.【點(diǎn)睛】本題考查了直線和橢圓綜合,考查了弦長(zhǎng)和中點(diǎn)問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.18、,;當(dāng)時(shí),棧道總長(zhǎng)度最短.【解析】
連,,由切線長(zhǎng)定理知:,,,,即,,則,,進(jìn)而確定的取值范圍;根據(jù)求導(dǎo)得,利用增減性算出,進(jìn)而求得取值.【詳解】解:連,,由切線長(zhǎng)定理知:,,,又,,故,則劣弧的長(zhǎng)為,因此,優(yōu)弧的長(zhǎng)為,又,故,,即,,所以,,,則;,,其中,,-0+單調(diào)遞減極小值單調(diào)遞增故時(shí),所以當(dāng)時(shí),棧道總長(zhǎng)度最短.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于中檔題.19、(1)(2)是為定值,的橫坐標(biāo)為定值【解析】
(1)根據(jù)“直線垂直于軸時(shí),四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡(jiǎn)后寫出根與系數(shù)關(guān)系.求得直線的方程,并求得兩直線交點(diǎn)的橫坐標(biāo),結(jié)合根與系數(shù)關(guān)系進(jìn)行化簡(jiǎn),求得的橫坐標(biāo)為定值.【詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點(diǎn),設(shè)直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因?yàn)椋裕缘臋M坐標(biāo)為定值.【點(diǎn)睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關(guān)系,考查直線和直線交點(diǎn)坐標(biāo)的求法,考查運(yùn)算求解能力,屬于中檔題.20、【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡(jiǎn)即可.【詳解】因?yàn)?,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園助教醫(yī)療知識(shí)
- 新疆警察學(xué)院《發(fā)光材料與器件》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年春運(yùn)工作總結(jié)(33篇)
- 溫病透熱轉(zhuǎn)氣
- 供應(yīng)豬肉合同范例
- 土地承包解約合同范例
- 退休材料合同范例
- 購(gòu)車正式合同范例
- 個(gè)人和廚師合同范例
- 鋪路板購(gòu)銷合同范例
- 催化材料智慧樹知到期末考試答案2024年
- 兒童用藥安全知識(shí)(共26張)
- 2021年機(jī)務(wù)檢修試題庫(kù)
- 上海中共一大會(huì)址觀后感
- 云南省紅河哈尼族彝族自治州2023-2024學(xué)年高一上學(xué)期期末考試語(yǔ)文試題【含答案解析】
- IT運(yùn)維述職報(bào)告
- 提升企業(yè)全面風(fēng)險(xiǎn)管理能力的團(tuán)隊(duì)建設(shè)模式
- 垃圾焚燒發(fā)電項(xiàng)目“EPC+O”模式
- 解分式方程50題八年級(jí)數(shù)學(xué)上冊(cè)
- 2024年安徽文都控股集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 音樂盛典策劃方案
評(píng)論
0/150
提交評(píng)論