版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省中山一中2025屆高三一診考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.2.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.3.的展開式中的系數(shù)是()A.160 B.240 C.280 D.3204.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.5.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.6.學(xué)業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個(gè)等級.某班共有名學(xué)生且全部選考物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測試成績?nèi)鐖D所示.該班學(xué)生中,這兩科等級均為的學(xué)生有人,這兩科中僅有一科等級為的學(xué)生,其另外一科等級為,則該班()A.物理化學(xué)等級都是的學(xué)生至多有人B.物理化學(xué)等級都是的學(xué)生至少有人C.這兩科只有一科等級為且最高等級為的學(xué)生至多有人D.這兩科只有一科等級為且最高等級為的學(xué)生至少有人7.已知等差數(shù)列的公差為,前項(xiàng)和為,,,為某三角形的三邊長,且該三角形有一個(gè)內(nèi)角為,若對任意的恒成立,則實(shí)數(shù)().A.6 B.5 C.4 D.38.將函數(shù)圖象向右平移個(gè)單位長度后,得到函數(shù)的圖象關(guān)于直線對稱,則函數(shù)在上的值域是()A. B. C. D.9.若與互為共軛復(fù)數(shù),則()A.0 B.3 C.-1 D.410.已知為銳角,且,則等于()A. B. C. D.11.已知命題:“關(guān)于的方程有實(shí)根”,若為真命題的充分不必要條件為,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)O為坐標(biāo)原點(diǎn),,若點(diǎn)B(x,y)滿足,則的最大值是__________.14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知集合,,則_____________.16.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.18.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).19.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.20.(12分)在直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上且軸,直線交軸于點(diǎn),,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點(diǎn),且滿足,求的面積.21.(12分)已知,,求證:(1);(2).22.(10分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進(jìn)行平方運(yùn)算,可將問題轉(zhuǎn)化為模長和夾角運(yùn)算,代入即可求得.【詳解】在上投影為,即又本題正確選項(xiàng):【點(diǎn)睛】本題考查向量模長的運(yùn)算,對于含加減法運(yùn)算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.2、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.3、C【解析】
首先把看作為一個(gè)整體,進(jìn)而利用二項(xiàng)展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項(xiàng)展開式的通項(xiàng)公式可得的第項(xiàng)為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點(diǎn)睛】本題考查二項(xiàng)展開式指定項(xiàng)的系數(shù),掌握二項(xiàng)展開式的通項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.4、C【解析】
,將看成一個(gè)整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.5、C【解析】
如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.6、D【解析】
根據(jù)題意分別計(jì)算出物理等級為,化學(xué)等級為的學(xué)生人數(shù)以及物理等級為,化學(xué)等級為的學(xué)生人數(shù),結(jié)合表格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).【詳解】根據(jù)題意可知,名學(xué)生減去名全和一科為另一科為的學(xué)生人(其中物理化學(xué)的有人,物理化學(xué)的有人),表格變?yōu)椋何锢砘瘜W(xué)對于A選項(xiàng),物理化學(xué)等級都是的學(xué)生至多有人,A選項(xiàng)錯(cuò)誤;對于B選項(xiàng),當(dāng)物理和,化學(xué)都是時(shí),或化學(xué)和,物理都是時(shí),物理、化學(xué)都是的人數(shù)最少,至少為(人),B選項(xiàng)錯(cuò)誤;對于C選項(xiàng),在表格中,除去物理化學(xué)都是的學(xué)生,剩下的都是一科為且最高等級為的學(xué)生,因?yàn)槎际堑膶W(xué)生最少人,所以一科為且最高等級為的學(xué)生最多為(人),C選項(xiàng)錯(cuò)誤;對于D選項(xiàng),物理化學(xué)都是的最多人,所以兩科只有一科等級為且最高等級為的學(xué)生最少(人),D選項(xiàng)正確.故選:D.【點(diǎn)睛】本題考查合情推理,考查推理能力,屬于中等題.7、C【解析】
若對任意的恒成立,則為的最大值,所以由已知,只需求出取得最大值時(shí)的n即可.【詳解】由已知,,又三角形有一個(gè)內(nèi)角為,所以,,解得或(舍),故,當(dāng)時(shí),取得最大值,所以.故選:C.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的最值問題,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.8、D【解析】
由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對稱,,,,函數(shù).在上,,,故,即的值域是,故選:D.【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對稱性,余弦函數(shù)的值域,屬于中檔題.9、C【解析】
計(jì)算,由共軛復(fù)數(shù)的概念解得即可.【詳解】,又由共軛復(fù)數(shù)概念得:,.故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù)的概念.10、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)椋?,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.11、B【解析】命題p:,為,又為真命題的充分不必要條件為,故12、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,可行域如圖,直線與圓相切時(shí)取最大值,由14、【解析】
由于,則.15、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點(diǎn)睛】本題考查了交集及其運(yùn)算,屬于基礎(chǔ)題.16、【解析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡,根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識.18、(1)(2)三個(gè)零點(diǎn)【解析】
(1)由題意知恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)?,又,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),導(dǎo)數(shù)的綜合應(yīng)用.在研究函數(shù)零點(diǎn)時(shí),有一種方法是把函數(shù)的零點(diǎn)轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),特別是利用分離參數(shù)法轉(zhuǎn)化為動(dòng)直線與函數(shù)圖象交點(diǎn)問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性與極值,從而得出函數(shù)的變化趨勢,得出結(jié)論.19、(1).(2).【解析】
(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計(jì)算夾角得到答案.(2)設(shè),0≤λ≤1,計(jì)算P(0,2λ,2﹣2λ),計(jì)算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點(diǎn),∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長度|PF|.【點(diǎn)睛】本題考查了異面直線夾角,根據(jù)二面角求長度,意在考查學(xué)生的空間想象能力和計(jì)算能力.20、(1);(2).【解析】
(1)根據(jù)離心率以及,即可列方程求得,則問題得解;(2)設(shè)直線方程為,聯(lián)立橢圓方程,結(jié)合韋達(dá)定理,根據(jù)題意中轉(zhuǎn)化出的,即可求得參數(shù),則三角形面積得解.【詳解】(1)設(shè),由題意可得.因?yàn)槭堑闹形痪€,且,所以,即,因?yàn)檫M(jìn)而得,所以橢圓方程為(2)由已知得兩邊平方整理可得.當(dāng)直線斜率為時(shí),顯然不成立.直線斜率不為時(shí),設(shè)直線的方程為,聯(lián)立消去,得,所以,由得將代入整理得,展開得,整理得,所以.即為所求.【點(diǎn)睛】本題考查由離心率求橢圓的方程,以及橢圓三角形面積的求解,屬綜合中檔題.21、(1)見解析;(2)見解析.【解析】
(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個(gè)式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當(dāng)且僅當(dāng)a=b=c等號成立∴.【點(diǎn)睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關(guān)鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.22、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對任意恒成立,即時(shí),,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44958-2024化工設(shè)備安全管理規(guī)范
- 2024年度園藝產(chǎn)品包裝與物流服務(wù)合同文本3篇
- 2024年醫(yī)療廢棄物危險(xiǎn)品運(yùn)輸合作協(xié)議3篇
- 2024年度生態(tài)園林栽樹與節(jié)水灌溉承包合同3篇
- 2024年度個(gè)人住房貸款委托管理服務(wù)合同3篇
- 2024年度有機(jī)肥產(chǎn)品研發(fā)與市場推廣合作協(xié)議6篇
- 2024噴漆設(shè)備升級改造項(xiàng)目房租租賃協(xié)議書3篇
- 2024年度植物新品種知識產(chǎn)權(quán)授權(quán)協(xié)議3篇
- 2024醫(yī)療器械研發(fā)及生產(chǎn)質(zhì)量控制合同樣本3篇
- 2024年度印刷品印刷材料環(huán)保認(rèn)證采購合同3篇
- 北京市朝陽區(qū)2023-2024學(xué)年九年級上學(xué)期期末物理試卷
- 2024-2025學(xué)年高一上學(xué)期期末數(shù)學(xué)試卷(基礎(chǔ)篇)(含答案)
- 智慧康復(fù)醫(yī)院智能化總體規(guī)劃方案
- 申能集團(tuán)在線測評題目
- 四川政采評審專家入庫考試基礎(chǔ)題復(fù)習(xí)試題
- 一年級上冊語文拼音前后鼻韻母和平翹專練
- 【MOOC】概率統(tǒng)計(jì)和隨機(jī)過程-南京郵電大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年度北京租大客車旅游租車合同范本
- 校園足球匯報(bào)
- 2024年表面活性劑行業(yè)發(fā)展趨勢分析:我國表面活性劑產(chǎn)量增長至388.52萬噸
- 中華人民共和國保守國家秘密法實(shí)施條例
評論
0/150
提交評論