2025屆黑龍江省哈爾濱市六中高考數(shù)學(xué)三模試卷含解析_第2頁
2025屆黑龍江省哈爾濱市六中高考數(shù)學(xué)三模試卷含解析_第3頁
2025屆黑龍江省哈爾濱市六中高考數(shù)學(xué)三模試卷含解析_第4頁
2025屆黑龍江省哈爾濱市六中高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆黑龍江省哈爾濱市六中高考數(shù)學(xué)三模試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知雙曲線與雙曲線沒有公共點(diǎn),則雙曲線的離心率的取值范圍是()A. B. C. D.3.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.4.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點(diǎn),則異面直線與所成角的余弦值為()A. B. C. D.5.已知函數(shù)(,是常數(shù),其中且)的大致圖象如圖所示,下列關(guān)于,的表述正確的是()A., B.,C., D.,6.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種7.已知向量,(其中為實(shí)數(shù)),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.9.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米10.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③11.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價(jià)值12.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.2二、填空題:本題共4小題,每小題5分,共20分。13.在中,、的坐標(biāo)分別為,,且滿足,為坐標(biāo)原點(diǎn),若點(diǎn)的坐標(biāo)為,則的取值范圍為__________.14.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識競賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.15.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實(shí)數(shù)的值為_______.16.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.18.(12分)已知函數(shù),其中,.(1)當(dāng)時(shí),求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r(shí),求在上的值域.19.(12分)等差數(shù)列的公差為2,分別等于等比數(shù)列的第2項(xiàng),第3項(xiàng),第4項(xiàng).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前2020項(xiàng)的和.20.(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,,.求數(shù)列,的通項(xiàng)公式;若數(shù)列滿足,求的前項(xiàng)和.21.(12分)設(shè)的內(nèi)角、、的對邊長分別為、、.設(shè)為的面積,滿足.(1)求;(2)若,求的最大值.22.(10分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)的斜率,若不能,說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.2、C【解析】

先求得的漸近線方程,根據(jù)沒有公共點(diǎn),判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點(diǎn),所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.3、C【解析】

對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.4、B【解析】

由題意建立空間直角坐標(biāo)系,表示出各點(diǎn)坐標(biāo)后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標(biāo)系,由題意:,,,,,為的中點(diǎn),.,,,異面直線與所成角的余弦值為即為.故選:B.【點(diǎn)睛】本題考查了空間向量的應(yīng)用,考查了空間想象能力,屬于基礎(chǔ)題.5、D【解析】

根據(jù)指數(shù)函數(shù)的圖象和特征以及圖象的平移可得正確的選項(xiàng).【詳解】從題設(shè)中提供的圖像可以看出,故得,故選:D.【點(diǎn)睛】本題考查圖象的平移以及指數(shù)函數(shù)的圖象和特征,本題屬于基礎(chǔ)題.6、D【解析】

采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題7、A【解析】

結(jié)合向量垂直的坐標(biāo)表示,將兩個(gè)條件相互推導(dǎo),根據(jù)能否推導(dǎo)的情況判斷出充分、必要條件.【詳解】由,則,所以;而當(dāng),則,解得或.所以“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本小題考查平面向量的運(yùn)算,向量垂直,充要條件等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,應(yīng)用意識.8、A【解析】因?yàn)椋?,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個(gè)周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)椋虼?,選A.點(diǎn)睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對稱);(2)函數(shù)關(guān)于點(diǎn)對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則9、B【解析】

由于實(shí)際問題中扇形弧長較小,可將導(dǎo)線的長視為扇形弧長,利用弧長公式計(jì)算即可.【詳解】因?yàn)榛¢L比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導(dǎo)線長度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長的計(jì)算,屬于容易題.10、B【解析】

由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點(diǎn)關(guān)于軸對稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.11、B【解析】

根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點(diǎn)圖里變量的對應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【點(diǎn)睛】本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).12、B【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由正弦定理可得點(diǎn)在曲線上,設(shè),則,將代入可得,利用二次函數(shù)的性質(zhì)可得范圍.【詳解】解:由正弦定理得,則點(diǎn)在曲線上,設(shè),則,,又,,因?yàn)?,則,即的取值范圍為.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義,考查向量數(shù)量積的坐標(biāo)運(yùn)算,考查學(xué)生計(jì)算能力,有一定的綜合性,但難度不大.14、【解析】

從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式15、【解析】

根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【詳解】由圖可知:,所以,又因?yàn)椋?,所?故答案為:.【點(diǎn)睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.16、【解析】

直接計(jì)算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時(shí),,故,解得.故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對于三角函數(shù)知識的綜合應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又面,且是面與面的交線,是的中點(diǎn).(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.設(shè)存在滿足要求,且,則由得:,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).18、(1)(2)【解析】

(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因?yàn)?,所以?)因?yàn)榧匆驗(yàn)椋运砸驗(yàn)樗运援?dāng)時(shí),.當(dāng)時(shí),(最大值)當(dāng)時(shí),在是增函數(shù),在是減函數(shù).的值域是.【點(diǎn)睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運(yùn)算求解能力,屬于中檔題.19、(1),;(2).【解析】

(1)根據(jù)題意同時(shí)利用等差、等比數(shù)列的通項(xiàng)公式即可求得數(shù)列和的通項(xiàng)公式;(2)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可求得數(shù)列的前2020項(xiàng)的和.【詳解】(1)依題意得:,所以,所以解得設(shè)等比數(shù)列的公比為,所以又(2)由(1)知,因?yàn)棰佼?dāng)時(shí),②由①②得,,即,又當(dāng)時(shí),不滿足上式,.數(shù)列的前2020項(xiàng)的和設(shè)③,則④,由③④得:,所以,所以.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式、性質(zhì),錯(cuò)位相減法求和,考查學(xué)生的邏輯推理能力,化歸與轉(zhuǎn)化能力及綜合運(yùn)用數(shù)學(xué)知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數(shù)學(xué)運(yùn)算.是中檔題.20、,;.【解析】

由,公差,有,,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的通項(xiàng)公式;當(dāng)時(shí),由,所以,當(dāng)時(shí),由,,可得,進(jìn)而求出前項(xiàng)和.【詳解】解:由題意知,,公差,有1,,成等比數(shù)列,所以,解得.所以數(shù)列的通項(xiàng)公式.?dāng)?shù)列的公比,其通項(xiàng)公式.當(dāng)時(shí),由,所以.當(dāng)時(shí),由,,兩式相減得,所以.故所以的前項(xiàng)和,.又時(shí),,也符合上式,故.【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項(xiàng)公式,前項(xiàng)和公式的應(yīng)用等基礎(chǔ)知識;考查運(yùn)算求解能力,方程思想,分類討論思想,應(yīng)用意識,屬于中檔題.21、(1);(2).【解析】

(1)根據(jù)條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數(shù)值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當(dāng)且僅當(dāng)時(shí)取最大值.故的最大值為.【點(diǎn)睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論