版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川內(nèi)江威遠(yuǎn)龍會(huì)中學(xué)高三第六次模擬考試數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正三棱柱各條棱的長(zhǎng)度均相等,為的中點(diǎn),分別是線段和線段的動(dòng)點(diǎn)(含端點(diǎn)),且滿足,當(dāng)運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是A.在內(nèi)總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形2.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.3.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.84.對(duì)于函數(shù),定義滿足的實(shí)數(shù)為的不動(dòng)點(diǎn),設(shè),其中且,若有且僅有一個(gè)不動(dòng)點(diǎn),則的取值范圍是()A.或 B.C.或 D.5.正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.66.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.7.()A. B. C. D.8.設(shè)函數(shù),當(dāng)時(shí),,則()A. B. C.1 D.9.已知復(fù)數(shù)z滿足,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知集合,,則的真子集個(gè)數(shù)為()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)11.一個(gè)封閉的棱長(zhǎng)為2的正方體容器,當(dāng)水平放置時(shí),如圖,水面的高度正好為棱長(zhǎng)的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.12.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號(hào)是________.14.已知F為雙曲線的右焦點(diǎn),過(guò)F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點(diǎn)),則C的離心率為_(kāi)_______.15.已知關(guān)于的方程在區(qū)間上恰有兩個(gè)解,則實(shí)數(shù)的取值范圍是________16.隨著國(guó)力的發(fā)展,人們的生活水平越來(lái)越好,我國(guó)的人均身高較新中國(guó)成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.18.(12分)已知函數(shù).(1)時(shí),求不等式解集;(2)若的解集包含于,求a的取值范圍.19.(12分)設(shè),,,.(1)若的最小值為4,求的值;(2)若,證明:或.20.(12分)已知中,角,,的對(duì)邊分別為,,,已知向量,且.(1)求角的大?。唬?)若的面積為,,求.21.(12分)已知函數(shù),直線為曲線的切線(為自然對(duì)數(shù)的底數(shù)).(1)求實(shí)數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
A項(xiàng)用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項(xiàng)利用線面垂直的判定定理;C項(xiàng)三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項(xiàng)用反證法說(shuō)明三角形DMN不可能是直角三角形.【詳解】A項(xiàng),用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項(xiàng),如圖:當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),若滿足BM=CN,則線段MN必過(guò)正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項(xiàng),當(dāng)M、N分別在BB1、CC1上運(yùn)動(dòng)時(shí),△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項(xiàng),若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時(shí)DM,DN的長(zhǎng)大于BB1,所以△DMN不可能為直角三角形,故錯(cuò)誤.故選D【點(diǎn)睛】本題考查了命題真假判斷、棱柱的結(jié)構(gòu)特征、空間想象力和思維能力,意在考查對(duì)線面、面面平行、垂直的判定和性質(zhì)的應(yīng)用,是中檔題.2、B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).3、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.4、C【解析】
根據(jù)不動(dòng)點(diǎn)的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時(shí),,則在內(nèi)單調(diào)遞增;當(dāng)時(shí),,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個(gè)不動(dòng)點(diǎn),可得得或,解得或.故選:C【點(diǎn)睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.5、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問(wèn)題,是一中檔題.6、B【解析】
據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.7、B【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】.故選B.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.8、A【解析】
由降冪公式,兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)性質(zhì)求得參數(shù)值.【詳解】,時(shí),,,∴,由題意,∴.故選:A.【點(diǎn)睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數(shù)性質(zhì),掌握正弦函數(shù)性質(zhì)是解題關(guān)鍵.9、A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,在第一象限.故選:A.【點(diǎn)睛】本題考查共軛復(fù)數(shù)的求法,考查對(duì)復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對(duì)應(yīng)的點(diǎn),考查運(yùn)算能力,屬于??碱}.10、C【解析】
求出的元素,再確定其真子集個(gè)數(shù).【詳解】由,解得或,∴中有兩個(gè)元素,因此它的真子集有3個(gè).故選:C.【點(diǎn)睛】本題考查集合的子集個(gè)數(shù)問(wèn)題,解題時(shí)可先確定交集中集合的元素個(gè)數(shù),解題關(guān)鍵是對(duì)集合元素的認(rèn)識(shí),本題中集合都是曲線上的點(diǎn)集.11、B【解析】
根據(jù)已知可知水面的最大高度為正方體面對(duì)角線長(zhǎng)的一半,由此得到結(jié)論.【詳解】正方體的面對(duì)角線長(zhǎng)為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對(duì)角線長(zhǎng)的一半,即最大水面高度為,故選B.【點(diǎn)睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.12、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯(cuò)誤;“p∨q”為假命題說(shuō)明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯(cuò)誤;因?yàn)椤叭魓y=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯(cuò)誤.14、2【解析】
求出焦點(diǎn)到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點(diǎn)到漸近線的距離,從而得出一個(gè)關(guān)于的等式.15、【解析】
先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究?jī)珊瘮?shù)的圖像交點(diǎn),觀察圖像,即可求出.【詳解】因?yàn)殛P(guān)于的方程在區(qū)間上恰有兩個(gè)解,令,所以方程在上只有一解,即有,直線與在的圖像有一個(gè)交點(diǎn),由圖可知,實(shí)數(shù)的取值范圍是,但是當(dāng)時(shí),還有一個(gè)根,所以此時(shí)共有3個(gè)根.綜上實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查學(xué)生運(yùn)用轉(zhuǎn)化與化歸思想的能力,方程有解問(wèn)題轉(zhuǎn)化成兩函數(shù)的圖像有交點(diǎn)問(wèn)題,是常見(jiàn)的轉(zhuǎn)化方式.16、3000【解析】
根據(jù)正態(tài)曲線的對(duì)稱性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對(duì)稱性的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)①;②.【解析】
(1)設(shè)過(guò)的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡(jiǎn)即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過(guò)的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:.,又點(diǎn)在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問(wèn)題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.18、(1)(2)【解析】
(1)代入可得對(duì)分類討論即可得不等式的解集;(2)根據(jù)不等式在上恒成立去絕對(duì)值化簡(jiǎn)可得再去絕對(duì)值即可得關(guān)于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當(dāng)時(shí),不等式可化為,①當(dāng)時(shí),不等式為,解得;②當(dāng)時(shí),不等式為,無(wú)解;③當(dāng)時(shí),不等式為,解得,綜上,原不等式的解集為.(2)因?yàn)榈慕饧冢瑒t不等式可化為,即.解得,由題意知,解得,所以實(shí)數(shù)a的取值范圍是.【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法分類討論解絕對(duì)值不等式的應(yīng)用,含參數(shù)不等式的解法.難度一般.19、(1)2;(2)見(jiàn)解析【解析】
(1)將化簡(jiǎn)為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據(jù),即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,利用基本不等式和放縮法求最值,考查化簡(jiǎn)計(jì)算能力.20、(1);(2).【解析】試題分析:(1)利用已知及平面向量數(shù)量積運(yùn)算可得,利用正弦定理可得,結(jié)合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理可得,故可得.試題解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.21、(1);(2).【解析】
試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點(diǎn)的橫坐標(biāo),代入兩個(gè)曲線的方程,解方程組,可求得;(2)設(shè)與交點(diǎn)的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對(duì)求導(dǎo)得.設(shè)直線與曲線切于點(diǎn),則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號(hào),對(duì)函數(shù)求導(dǎo)得.當(dāng)時(shí),恒成立.當(dāng)時(shí),,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立,記,則,當(dāng)變化時(shí),變化情況列表如下:
3
0
極小值
∴,故“在上恒成立”只需,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,綜合①②知,當(dāng)時(shí),函數(shù)為增函數(shù).故實(shí)數(shù)的取值范圍是考點(diǎn):函數(shù)導(dǎo)數(shù)與不等式.【方法點(diǎn)晴】函數(shù)導(dǎo)數(shù)問(wèn)題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點(diǎn):一個(gè)是切點(diǎn),一個(gè)是斜率,切點(diǎn)即在原來(lái)函數(shù)圖象上,也在切
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 快餐供應(yīng)合同范本
- 家庭住家保姆聘用合同照顧老人版
- 2025版智慧家居居間代理房產(chǎn)買賣合同模板3篇
- 小工程施工合同范本
- 幼兒園園實(shí)習(xí)報(bào)告模板合集五篇
- 弱電維保合同
- 2025年度家具搬運(yùn)與室內(nèi)裝飾服務(wù)合同2篇
- 描寫美好生活的作文600字5篇
- 關(guān)于個(gè)人小學(xué)述職報(bào)告模板錦集6篇
- 2024年日本式電纜線接頭項(xiàng)目可行性研究報(bào)告
- DB63T 2376-2024 餐飲單位有害生物防治技術(shù)指南
- 中考語(yǔ)文名著《西游記》專項(xiàng)復(fù)習(xí):《三調(diào)芭蕉扇》
- 2025新年春節(jié)專用對(duì)聯(lián)蛇年春聯(lián)帶橫批
- 【MOOC】融合新聞:通往未來(lái)新聞之路-暨南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2024年世界職業(yè)院校技能大賽中職組“工程測(cè)量組”賽項(xiàng)考試題庫(kù)(含答案)
- 半結(jié)構(gòu)化面試題100題
- 靜脈治療小組管理
- 浙江省杭州二中2025屆物理高三第一學(xué)期期末聯(lián)考試題含解析
- 帶貨主播年終總結(jié)匯報(bào)
- 2024中國(guó)綠發(fā)投資集團(tuán)限公司招聘300人高頻難、易錯(cuò)點(diǎn)練習(xí)500題附帶答案詳解
- 消化系統(tǒng)護(hù)理常規(guī)
評(píng)論
0/150
提交評(píng)論