




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
構(gòu)建電信運營商用戶分群模型電信運營商用戶分析任務(wù)描述電信通信服務(wù)的總方針是迅速、準確、安全、方便。在電信通信服務(wù)的總方針的指引下,通過客戶基本信息,將用戶分類,對每類用戶進行個性化服務(wù),最大程度地控制客戶流失。本任務(wù)的操作將在保護用戶信息安全的前提下進行。大數(shù)據(jù)時代,需要堅持網(wǎng)絡(luò)安全為人民、網(wǎng)絡(luò)安全靠人民,樹立正確的網(wǎng)絡(luò)安全觀,提高自身網(wǎng)絡(luò)安全意識和防護技能。本任務(wù)通過對客戶性別、年齡、在網(wǎng)時長等信息進行簡單的畫圖來觀察客戶基本信息與用戶在3月是否流失的關(guān)系,進行K-Means聚類分析,建立用戶分群模型。任務(wù)要求使用pandas庫分析用戶基本信息。使用sklearn庫進行聚類分析。使用Matplotlib庫實現(xiàn)結(jié)果的可視化。分析用戶基本信息構(gòu)建K-Means模型構(gòu)建K-Means模型構(gòu)建K-Means模型主要分為以下6個步驟。1選擇聚類優(yōu)度(計算MIC和BT)2繪制MIC曲線和BT曲線5聚類用戶類別命名4繪制密度函數(shù)圖6用戶類別占比分析3構(gòu)建模型聚類分析常見的數(shù)據(jù)挖掘手段,其主要假設(shè)是數(shù)據(jù)間存在相似性。而相似性是有價值的,因此可以被用于探索數(shù)據(jù)中的特性以產(chǎn)生價值。使用import和from導入KMeans、seaborn等開發(fā)類庫。聚類前準備,使用linalg.norm函數(shù)計算二范數(shù),使用for循環(huán)計算MIC和BT。MIC值是模型信息準則,通過最小化MIC值來估計聚類數(shù)量和分區(qū),BT值是特征的體現(xiàn)程度,BT值越大代表該聚類結(jié)果更能體現(xiàn)分區(qū)特征。選擇聚類優(yōu)度為了更直觀地看到聚類后的特征體現(xiàn)程度,使用plot函數(shù)繪制MIC曲線和BT曲線,將數(shù)據(jù)可視化。繪制MIC曲線和BT曲線選擇聚類數(shù)目為5之后,使用KMeans進行聚類。構(gòu)建模型建立聚類模型后,使用sns庫中kdeplot函數(shù)繪制密度函數(shù)圖。繪制密度函數(shù)圖繪制密度函數(shù)圖建立聚類模型后,使用seaborn庫中kdeplot函數(shù)繪制密度函數(shù)圖。根據(jù)實際情況與數(shù)據(jù)特征劃分五類用戶的命名。聚類用戶類別命名輸出類型類別1類別2類別3類別4類別5命名中高費用中低費用高費用低費用一般費用注意:不同的運行環(huán)境得到的聚類結(jié)果會存在一定的差異,五類用戶的命名情況需要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《三、組內(nèi)交流》教學設(shè)計 -2024-2025學年初中信息技術(shù)人教版七年級上冊
- 2025至2030年中國強力開蠟水數(shù)據(jù)監(jiān)測研究報告
- 2025年度監(jiān)護權(quán)變更及監(jiān)護責任合同
- 2025年度汽修廠修理工勞動合同爭議仲裁合同
- 2025年度金融衍生品交易以物抵債協(xié)議書法院審查
- 2025年度油罐租賃與跨境油氣貿(mào)易合同
- 2025年度船舶抵押貸款合同
- 2025年度高科技研發(fā)企業(yè)會計代賬研發(fā)費用加計扣除協(xié)議
- 二零二五年度商業(yè)用房物業(yè)服務(wù)與品牌推廣合作協(xié)議
- 二零二五年度車輛抵押權(quán)爭議賠償調(diào)解合同
- 2025年教育局財務(wù)工作計劃
- Unit 5 Now and Then-Lesson 3 First-Time Experiences 說課稿 2024-2025學年北師大版(2024)七年級英語下冊
- 《中國心力衰竭診斷和治療指南2024》解讀
- 中小學智慧校園建設(shè)方案
- 中國食物成分表2020年權(quán)威完整改進版
- 【MOOC】影視鑒賞-揚州大學 中國大學慕課MOOC答案
- 危險性較大的分部分項工程清單安全管理措施
- 高壓輸電線路質(zhì)量、檢查、驗收培訓課件
- 二年級數(shù)學下冊重點思維每日一練小紙條
- 混合型頸椎病課件
- 國家安全教育教案分享
評論
0/150
提交評論