浙江省湖州市重點中學2025屆高三下學期一??荚嚁?shù)學試題含解析_第1頁
浙江省湖州市重點中學2025屆高三下學期一??荚嚁?shù)學試題含解析_第2頁
浙江省湖州市重點中學2025屆高三下學期一模考試數(shù)學試題含解析_第3頁
浙江省湖州市重點中學2025屆高三下學期一??荚嚁?shù)學試題含解析_第4頁
浙江省湖州市重點中學2025屆高三下學期一模考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省湖州市重點中學2025屆高三下學期一??荚嚁?shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.2.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.3.從拋物線上一點(點在軸上方)引拋物線準線的垂線,垂足為,且,設拋物線的焦點為,則直線的斜率為()A. B. C. D.4.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.5.已知等差數(shù)列的前n項和為,,則A.3 B.4 C.5 D.66.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.7.若直線與曲線相切,則()A.3 B. C.2 D.8.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數(shù)學水平,也印證了我國古代音律與歷法的密切聯(lián)系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數(shù)據(jù)(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續(xù)減小,其正切值及對應的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年9.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.10.設實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.411.函數(shù)的圖象與軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位12.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數(shù)記為.則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)14.設常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.15.若復數(shù)滿足,其中為虛數(shù)單位,則的共軛復數(shù)在復平面內(nèi)對應點的坐標為_____.16.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.18.(12分)在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)求曲線的普通方程和直線的直角坐標方程;(2)若射線的極坐標方程為().設與相交于點,與相交于點,求.19.(12分)在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當?shù)拿娣e取得最大值時,求AD的長.20.(12分)在中,、、的對應邊分別為、、,已知,,.(1)求;(2)設為中點,求的長.21.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉(zhuǎn)綠燈30秒,然后是紅燈1分鐘,右轉(zhuǎn)不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經(jīng)過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?22.(10分)已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.2、B【解析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.3、A【解析】

根據(jù)拋物線的性質(zhì)求出點坐標和焦點坐標,進而求出點的坐標,代入斜率公式即可求解.【詳解】設點的坐標為,由題意知,焦點,準線方程,所以,解得,把點代入拋物線方程可得,,因為,所以,所以點坐標為,代入斜率公式可得,.故選:A【點睛】本題考查拋物線的性質(zhì),考查運算求解能力;屬于基礎題.4、A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎題.5、C【解析】

方法一:設等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因為,所以,則.故選C.6、D【解析】

以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.7、A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數(shù)的問題,涉及到的知識點有導數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.8、D【解析】

先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【詳解】解:由題意,可設冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【點睛】本題考查利用三角函數(shù)解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學建模思想,以及數(shù)學運算能力,屬中檔題.9、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內(nèi)公切線為與,由圖可知,設兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結(jié)合思想的應用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.10、C【解析】

畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關鍵.11、A【解析】依題意有的周期為.而,故應左移.12、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數(shù),對應的事件有哪些結(jié)果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據(jù)題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數(shù)就會出現(xiàn)三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數(shù)就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.14、【解析】

利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎題.15、【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數(shù)在復平面內(nèi)對應點的坐標為,故答案為【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義準確計算是關鍵,是基礎題.16、充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的應用,關鍵在于識記公式,屬中檔題.18、(1)曲線的普通方程為;直線的直角坐標方程為(2)【解析】

(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,將直線的極坐標方程化為直角坐標方程;(2)根據(jù)(1)求出曲線的極坐標方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標方程,求出和,即可求出.【詳解】解:(1)因為(為參數(shù)),所以消去參數(shù),得,所以曲線的普通方程為.因為所以直線的直角坐標方程為.(2)曲線的極坐標方程為.設的極徑分別為和,將()代入,解得,將()代入,解得.故.【點睛】本題考查利用消參法將參數(shù)方程化成普通方程以及利用互化公式將極坐標方程化為直角坐標方程,還考查極徑的運用和兩點間距離,屬于中檔題.19、(1);(2).【解析】

(1)利用正弦定理及可得,從而得到;(2)在中,利用余弦定可得,,而,故當時,的面積取得最大值,此時,,在中,再利用余弦定理即可解決.【詳解】(1)由正弦定理及已知得,結(jié)合,得,因為,所以,由,得.(2)在中,由余弦定得,因為,所以,當且僅當時,的面積取得最大值,此時.在中,由余弦定理得.即.【點睛】本題考查正余弦定理解三角形,涉及到基本不等式求最值,考查學生的計算能力,是一道容易題.20、(1);(2).【解析】

(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點睛】本題主要考查了正弦定理和余弦定理的運用.考查了學生對三角函數(shù)基礎知識的綜合運用.21、(1)6種;(2);(3).【解析】

(1)從4條街中選擇2條橫街即可;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論