版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省肇慶市饒平縣鳳洲中學2025屆高考沖刺模擬數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.2.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.3.等差數列中,,,則數列前6項和為()A.18 B.24 C.36 D.724.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.5.若為虛數單位,則復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.7.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.38.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.9.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.210.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.11.已知數列中,,且當為奇數時,;當為偶數時,.則此數列的前項的和為()A. B. C. D.12.在中,為邊上的中點,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為14.已知非零向量的夾角為,且,則______.15.現有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數字作答)16.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為整數的等差數列,為的前項和,若為和的等比中項,.(1)求數列的通項公式;(2)若,求最大的正整數,使得.18.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.19.(12分)設數列是公差不為零的等差數列,其前項和為,,若,,成等比數列.(1)求及;(2)設,設數列的前項和,證明:.20.(12分)已知函數,其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.21.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.22.(10分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數,求的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.2、D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.3、C【解析】
由等差數列的性質可得,根據等差數列的前項和公式可得結果.【詳解】∵等差數列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數列的性質以及等差數列的前項和公式的應用,屬于基礎題.4、B【解析】
先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.5、D【解析】
根據復數的運算,化簡得到,再結合復數的表示,即可求解,得到答案.【詳解】由題意,根據復數的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數的運算,以及復數的幾何意義,其中解答中熟記復數的運算法則,準確化簡復數為代數形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.7、C【解析】
結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.8、B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B【點睛】本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題9、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.10、B【解析】
根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.11、A【解析】
根據分組求和法,利用等差數列的前項和公式求出前項的奇數項的和,利用等比數列的前項和公式求出前項的偶數項的和,進而可求解.【詳解】當為奇數時,,則數列奇數項是以為首項,以為公差的等差數列,當為偶數時,,則數列中每個偶數項加是以為首項,以為公比的等比數列.所以.故選:A【點睛】本題考查了數列分組求和、等差數列的前項和公式、等比數列的前項和公式,需熟記公式,屬于基礎題.12、A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.14、1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.【點睛】本題考查根據向量的數量積運算求向量的模,關鍵在于將所求的向量的模平方,利用向量的數量積化簡求解即可,屬于基礎題.15、36【解析】
先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.16、【解析】
由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數列為各項均為整數,所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數列的通項公式、前項和公式,考查裂項相消法求數列的和.在等差數列和等比數列中基本量法是解題的基本方法.18、(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)本題主要考查空間位置關系的證明,意在考查學生對這些基礎知識的掌握水平和空間想象轉化能力.(2)證明空間位置關系,一般有幾何法和向量法,本題利用幾何法比較方便.19、(1),;(2)證明見解析.【解析】
(1)根據題中條件求出等差數列的首項和公差,然后根據首項和公差即可求出數列的通項和前項和;(2)根據裂項求和求出,根據的表達式即可證明.【詳解】(1)設的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數列基本量的求解,裂項求和法,屬于基礎題.20、(1)(2)證明見解析【解析】
(1)求導,代入,求出在處的導數值及函數值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數在上單調遞減,∴函數無極值;②當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴,綜上,函數的極大值恒大于0.【點睛】本小題主要考查利用導數求切線方程,考查利用導數研究函數的極值,考查分類討論的數學思想方法,屬于中檔題.21、(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標系.如圖所示:則,,,.∴,,.設為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝采購合同違約責任
- 燃料油購銷合同樣本格式
- 終止勞動合同協(xié)議編寫
- 購銷合同與采購合同的關系
- 快餐盒銷售合同
- 金融投資顧問合同
- 網絡內容推廣合同
- 借款合同范本的簡化版本解讀
- 企業(yè)員工培訓條款
- 精準廣告制作費用合同
- 實驗動物學:動物實驗設計完整版
- 團體標準化文件制修訂建議書
- 印度尼西亞民法
- 國壽新綠洲團體意外傷害保險(A款)條款
- 八年級上冊語文第五單元思維導圖
- 山東省煙臺市牟平區(qū)2023-2024學年數學四年級第一學期期末考試試題含答案
- 北京市停工留薪期分類目錄
- 第11課《宇宙生命之謎》閱讀理解題含答案
- Unit+12+Innovation+Topic+Talk+教學設計 高中英語北師大版(2019)選擇性必修第四冊
- 尖子生與優(yōu)生培養(yǎng)課件
- 第八章-高速鐵路運輸組織-課件
評論
0/150
提交評論